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Consider a Fredholm, integral equation for f(f,b) with a composite displacement kernel f(t,b) 

= g(t) + Afab [E(t,y) + F(t + y)] f(y ,b )dy, where g(t) is a given forcing function, the parameter A 

is defined over 0 < A ::;; 1,0::;; a::;; t';;; b, and the E and F functions are together the displacement 
kernels. Extending the invariant imbedding method given in our preceding paper [cf. Bellman, 
Kagiwada, Kalaba, and Veno, J. Math Phys. 9, 906 (1968)] , we show how the Bellman-Krein 
formula provides us with a Cauchy system of the functional equations governing the resolvent and 
the scattering function. The invariant imbedding equations for the scattering function and the 
auxiliary function for a = 0 reduce to those given in a preceding paper [cf. Casti, Kalaba, and Ueno 
J. Quant. Spectry. Radiative Transfer 9,537 (1969)], which treated with the diffuse reflection and 
transmission of radiation by a finite isotropically scattering atmosphere bounded by a specular 
reflector at the bottom. 

1. INTRODUCTION 

In a preceding paper (cf. Bellman, Kagiwada, Kalaba, 
and U enol), it was shown how to get the invariant im
bedding equations of the X and Y functions and the 
resolvent kernel of the Fredholm integral equation 
with a symmetric kernel, reducible to a auxiliary 
equation. In this paper, extending the procedure to a 
Fredholm integral equation with a composite displace
ment kernel, we show that the Bellman-Krein formu
la is a powerful tool for getting the Cauchy system of 
the functional equations for the scattering function 

In Equation (1), E(t, y) and F(t + y) are positive dis
placement kernels, e.g., 

E(t, y) = E(lt - y1), 

E(s) = f:e-s/z~Z, 
and 1 d 

F(s) = fo e-sIZA(z) zZ' 

where s ~ O. 

Let the resolvent of Equation (1) be denoted by 
K(t, y, b), which is symmetric with respect to t and y, 
because of the symmetric character of the kernels 
E and F. Then, Eq. (1) yields 

(2) 

(3) 

(4) 

and the resolvent kernel of the Fredholm integral 
equation. The invariant imbedding equations for the 
scattering function and the auxiliary function reduce 
to those for the scattering function and the source 
function in a finite isotropic ally scattering atmos
phere bounded by a specular reflector at the bottom 
(cf. Casti, Kalaba, and Uen0 2). The resolvent kernel 
permits us to calculate the internal radiation field in 
a finite atmosphere with a given distribution of emit
ting sources and a specular reflector at the bottom. 

J(t, b) = get) + t K(t, y, b )g(y)d)', (5) 
a 

In a subsequent paper, extending the procedure de
veloped in this paper, it will be shown how the diffuse 
scattering and transmission functions of radiation in 
a finite isotropically scattering atmosphere by a 
Lambert's law reflector at the bottom can also be 
found in a straightforward manner. So far as we 
know, the result is new. Up to the present only the 
total scattering and the diffuse transinission functions 
have been discussed (cf. Chandrasekhar3 ; van de 
Hulst4; Sobolev5 ; l?ellman, Kagiwada, Kalaba, and 
Uen0 6 ; Kagiwada and Kalaba7 ). 

2. BELLMAN-KREIN FORMULA FOR RESOLVENT 
OF FREDHOLM INTEGRAL EQUATION 

Consider a Fredholm integral equation with a com
posite displacement kernel 

J(t,b) = get) + At[E(t,y) + F(t + y)JJ(y,b)dy, (1) 
a 

where get) is a given forcing function, a constant para
meter A is defined over 0 < A ::5 1, and 0 ::5 a ::5 t ::5 b. 
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The resolvent K(t, y, b) is governed by the following 
integral equations: 

b 
K(t, y, b) = AG(t, y) + Af G(t, z)K(z, y, b )dz, (6) 

a 
b 

K(t, y, b) = AG(t, y) + Af K(t, z, b )G(z, y)dz, (7) 
a 

where 
G(t, y) = E(t, y) + F(t + y). (8) 

On differentiating Eq. (6) with respect to b, we have 
b 

Kb(t,y,b) = AG(t,b)K(b,y,b) + f G(t,z)Kb(z,y,b)dz, (9) 
a 

where the subscript represents partial differentiation 
with respect to b. As in our preceding paper (Bell
man, Kagiwada, Kalaba, and Uenol), putting 

Kb(t,y,b) = K(t,b,b)K(b,y,b), (10) 

inserting it into Eq. (9), and allowing for Eq. (6), we 
get 

Kb(t,y,b) = K(b,y,b)(AG(t,b) 

+ Af:G(t,Z)K(Z,b,b)dZ) 

= K(b,y,b)K(t,b,b). (11) 

Equation (10) is the Bellman-Krein formula for the 
Fredholm resolvent K(t, y, b) (cf. Bellman8 ; Krein9 ). 

By writing 

cf?(t, b) =K(t,b,b) =K(b,t,b), (12) 

Copyright © 1973 by the American Institute of Physics 1489 
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Eq. (9) is rewritten in the form 

Kb(t,y,b) = <I>(t,b)<I>(Y,b), 

which is useful for our further procedure. 

3. THE CAUCHY SYSTEM FOR THE AUXILIARY 
FUNCTION 

Introducing a new auxiliary function B, which satis
fies 

B(t, b, v) = A[e-(b-t)!v + A(v)e-(b+t)!v] 

(13) 

+ A~b[E(t, y) + F(t + y)]B(y, b, v)dy, (14) 

and rewriting it in terms of Fredholm resolvent K 
we get ' 

B(t, b, v) = A[e-(b-t)!v + A(v)e-(b+t)/v] 

b 
+ Al [e-(b-Y)!v + A(v)e-(b+Y)!v]K(y, t, b)dy. (15) 

a 

On differentiating Eq. (15) with respect to b and re
calling Eq. (13), we obtain 

Bb(t, b, v) = - (B(t, b, v)/v) + A<I>(t, b)(l + A(v)e-2b!v 

+ J)e-(b-Y)!v + A(V)e-(b+Y)/V]<I>(y,b)dY). (16) 

Making use of Eq. (15), Eq. (16) reduces to 

Bb(t,b,v)=-(B(t,b,v)/v) + <I>(t,b)B(b,b, v), (17) 

where <I>(t, b) may be expressed in the form 
1 

<I>(t,b) = J B(t,b,v)dv/v. (18) o 
Let the scattering function be denoted by R(b; v, u) 
expressed in terms of B function 

b 
R(b; v, u) = 1 B(y, b, u)[e-(b-Y)!v + A(v)e-(b+Y)!v]dy. 

a 
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Then, we get 

R(b; v, u) = R(b; u, v) (24) 

Equation (21) is similar in form to the scattering 
function of radiation for a finite isotropic ally scatter
ing atmosphere bounded by a specular reflector at the 
the bottom (cf. Casti, Kalaba, and Uen02 ). Once the 
scattering function has been given, with the aid of Eqs. 
(17) and (18),we compute <I>(t,b). Then,the Bellman
Krein formula (13) yields the required Fredholm re
solvent K(t,y, b) 

4. STATEMENT OF THE CAUCHY SYSTEM 

Let us restate the initial-value problem that deter
mines the set of equations for the computation of the 
scattering function R(b; v, u) and the resolvent 
K(t, y, b). The Cauchy system for R and B functions 
are as below: 

Rb(b;v,u) = -(~ + ~)R(b;V,U) + A(l + A(v)e-2b!v 

+ Jo
1 

R(b; v, w) ~)(1 + A(u)e-2b/ u 

J1 dW) + R(b; w,u) - , o W 
b - a> O. 

Bb(t,b,v) =-~(t,b,v) + A(l + A(v)e-2b!v 

11 dW)J1 + R(b; w, v) - B(t, b, z)dz, o W 0 

J1 dv 
<I>(t, b) = B(t, b, v) -, o v 

Kb(t, y, b) = <I>(t, b)<I>(y, b), 

(25) 

(26) 

(27) 

(28) 

The differentiation of Eq. (19) with respect to b yields (19) where 

Rb(b; v, u) = B(b, b, u)[l + A(v)e-2b!v] 

- ~ t B(y, b, u)[e-(b-y)!v + A(v)e-(II+Y )!v]dy 

b + J Bb(y, b, u)[e-(b-Y)/V + A(v)e- (b+Y)!v]dy. 
a 

(20) 

On substituting Eq. (17) into Eq. (20), and allowing for 
Eqs. (14) and (18), after some minor rearrangement 
of terms, we have 

Rb(b; v, u) = - (~ + M R(b; v, u) + A (1 + A(v)e-2b!v 

+ J
0

1 
R(b; v, W)~)(l + A(u)e-2b/u 

11 dZ) + R(b;z, u)- , o z 

together with the initial condition 

limR(b; v, u) = O. 
b=a 

Equation (21) is the desired invariant imbedding 
equation for the scattering function. Furthermore, it 
is readily proved that the scattering function R is 
symmetric with respect to v and u, as a consequence 
of 

t B(t,b,v)B(t,b,u)dt = AR(b;v,u) 
a 

(21) 

(22) 

b 
+ J B(t, b, u)B(t, b, v)dt - AR(b; u, v). (23) 

a 
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R(b; v, u) = R(b; u, v), 

K(t, y, b) = K(y, t, b). 

The initial conditions are 

(29) 

(30) 

lim R(b; v, u) = 0, (31) 
b;a 

lim B(t,b,v) = A(l + A(v)e-2t/v + J1
R(t;w,v) dW), 

t;b 0 W 

(32) 

lim K(t, y, b) = <I>(t, y). (33) b;y 
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It is shown that calculating Clebsch-Gordan coefficients of a nonunitary group can be reduced to 
formulas containing only representations of the unitary subgroup and additional conditions due to 
the antiunitary symmetry, This is another example demonstrating that, in applications involving 
corepresentations of nonunitary groups, the analysis can be made mainly in terms of representations 
of its unitary part. 

1.- INTRODUCTION 

Nonunitary groups and their corepresentations are of 
great importance in magnetic materials. In such ma
terial an antiunitary element is a product of time re
versal and an element of a space group. In nonmag
netic materials time reversal is itself a symmetry 
element. In every case where an antiunitary element 
is added to the ordinary space 'group there is a need 
to deal with corepresentations. The theory of nonuni
tary groups and their corepresentations was founded 
by Wigner, 1 developed by Dimmock and Wheeler, 2-4 

Dimmock,5 and has been reviewed by Bradley and 
Davis. 6 

The problem often arises of decomposing a reducible 
corepresentation of a nonunitary group into a sum of 
irreducible parts. An example of this is in determin
ing selection rules governing transitions in magnetic 
crystals, where the reducible corepresentation is a 
direct product of two irreducible corepresentations. 
Sometimes more detailed information is required, and 
one must calculate the matrix which transforms the 
corepresentation into a reduced form. The elements 
of this matrix are called the Clebsch-Gordan coef
ficients. Such information is needed, for example, in 
the Eckart-Wigner theorem. 1 ,7 

The Eckart-Wigner theorem was originally applied to 
calculate matrix elements of operators in physical 
systems of spherical symmetry, and found widespread 
use in such varied fields as atomic spectra, NMR, and 
elementary particles. Koster8 generalized this theo
rem to make it applicable to other unitary groups, 
and this generalization takes the form 

(1V~lp~ IIV{) = a1 Ua.(aB) + a2 Ua+nk.(aB) + "', 

where i, j, and k denote irreducible representations of 
a unitary group G; aI' a2,'" are constants called 
"reduced matrix elements" and U is the matrix of 
Clebsch-Gordan coefficients. 

For physical systems of spherical symmetry the 
Eckart-Wigner theorem takes on a simple form with 
only one term on the right-hand side of the above re
lation. In such a case knowing only the Clebsch-Gor
dan coefficients one is able to find selection rules and 
compare transition intensities. For systems of other 
unitary symmetry one usually needs to know more in
formation about the physical system. 

The Eckart-Wigner theorem has been generalized by 
Aviran and Zak9 to nonunitary groups. It was shown 
that the addition of an antiunitary element leads in 
general to additional connections among the reduced 
matrix elements. 
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This paper deals with the problem of finding the Cle
bsch-Gordan coefficients for nonunitary groups. The 
method used is one put forward by Aviran and Zak9 •10 

based on the method developed by Koster8 for unitary 
groups. It is shown that the finding of Clebsch-Gor
dan coefficients can be reduced to formulas contain
ing only representations of the unitary subgroup of 
the nonunitary group, and additional conditions due to 
the antiunitary symmetry. 

We review in Sec. IT the construction of irreducible 
corepresentations and the calculation of reduction co
efficients for nonunitary groups. We emphasize the 
role played by the unitary subgroup. In Sec. ill a 
method is derived of finding the Clebsch-Gordan co
efficients for nonunitary groups. An example is given 
in Sec. IV. 

II. COREPRESENTATIONS OF NONUNITARY 
GROUPS 

A nonunitary group H contains elements half of which 
are unitary and half antiunitary. The N /2 unitary ele
ments, denoted by u, form an invariant subgroup G of 
index two and we can write Has H = G + Gao' where 
ao is a fixed antiunitary element. The irreducible 
corepresentations Dk of a nonunitary group Hare 
constructed in one of three ways depending on the fol
lOwing classification of the irreducible representa
tions ak(ac/uao )* of the unitary subgroup G of HI: 

Type I: A,k(U) is equivalent to A,k(a(}uao)*, 

A,k(a(jluao)* = {3k-1 A,k(U){3k and (3k{3k* = A,k(a5)' 

Type II: A,k(u) is equivalent to A,k(a(jlua o)*, 

A,k(aifuao)* = {3k-1 A,k(u){3k but (3k{3k* = - A,k(a5)' 

Type ill: A,k(U) is not equivalent to A,k(a(jluao)*. 

The three types of irreducible corepresentations of H 
corresponding to the above classification are 1 

Type I: Dk(u) = A,k(U), 

Type IT: 

(

A,k(U) ) 
Dk(U) = , 

A,k(u) 

(1) 

Copyright ©1973 by the American Institute of Physics 1491 
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Type ill: 

(

6 k(U) 
Dk(U) = 

The number of times an irreducible corepresentation 
Dk is contained in a reducible corepresentation D is 
denoted by Ck and calculated from 11 

Ck = l:; X<D(u)h(Dk(U»* II; X(Dk(U»x(Dk(u»*, (2) 
u u 

where X(Dk(U)) is the character of Dk(U). The sums 
in (2) are over the elements u of the unitary subgroup 
only. When the reducible corepresentation is direct 
product of two irreducible corepresentations, D = Di 
X Di, eq. (2) takes the form11 

Ci' = I; X<Di(U» xtDJ(u»X<.Dk(u»* .. 
/6 X(Dk(U»X(Dk(U»*. (3) 

u 

By using the explicit form of the irreducible corepre
sentations given in (1), the coefficients CfJ can be 
written in terms of coefficients d~, the number of 
times the irreducible representatlOns 6 k of the uni
tary subgroup is contained in the reduced form of the 
direct product 6 i x 6 i . The e?cplicit form of the rela
tion between the C!~ and the di~ depends on the types 
of the irreducible corepresentations Dt,Di, and Dk 
appearing in (3). The relation between C~ and the 
di~' for all possible cases, has been given by Bradley 
and Davis. 6 

III. CLEBSCH-GORDAN COEFFICIENTS FOR NON· 
UNITARY GROUPS 

The matrix U, whose elements are the Clebsch-Gor
dan coefficients, transform a corepresentation D into 
reduced form in the following mannerl: 

UD(u)U-l = Dr(u) = Dk(U) , 
(

'Dk(U) ) 

IJm(u) 

UD(a)U-h = Dr(a) = .. Dk(a) , 
(

.Dk(a) ) 

Dm(a) • 

(4) 

(5) 

where u is a unitary element, a an antiunitary element, 
and Dr the reduced form of D. 

The matrices D( u), for all u, form a representation of 
the unitary subgroup G of H. The irreducible corepre
sentations appearing in Dr(u) , for all u, are either 
irreducible representations or sums of irreducible 
representations of the unitary group G. Consequently, 
to find the matrix U from (4) alone can be considered 
a calculation of a matrix which transforms a repre
sentation of a unitary group into reduced form. Such 
a calculation can be preformed using Koster's meth
od. a The matrix U so found is not unique, and requir
ing that U also satisfies (5) imposes additional condi
tions on its elements. 

J. Math. Phys., Vol. 14, No. 11, November 1973 

1492 

The theory of corepresentatlons is such that a single 
method applicable simultaneously to all three types 
of irreducible corepresentations which may appear in 
D .. is unobtainable. We therefore discuss three ca,ses 
corresponding to the three types of irreducible core
presentations. In each case we derive from (4), using 
Koster's method,a equations from which the elements 
of U are calculated, and the additional conditions on 
these elements imposed by (5). 

A. Type I corepresentations 

We assume that a Type I irreducible corepresentation 
Dk of dimension d appears 1 times in the reduced 
form D... To calculate the dl rows of U corresponding 
to these corepresentations, we rewrite (4) as D(u) = 
U-1D .. (u)U take the pqth element, multiply by Dk(u)!n 
= 6 k(u)!n' sum on u: 

N~2 ~ D(u)pq 6 k(u)!n 

d 
= N!2 

USing the explicit form of D .. (u) and the orthogonality 
relations for irreducible representations, we have 

d 
N!2 ~ D(u) pq 6 k(U)!n = U!pU,.q + Ul.m.pUdt,..q 

+ ... + U(~-l)d+m,pU(l-1)d+,.,q. (6) 

The elements of U calculated from (6) satisfy (4),8 
but not necessarily (5). We now derive the additional 
conditions on the elements of U calculated from (6) 
imposed by (5). We rewrite (5) as D(a) = U-1D(a)U*. 
Every antiunitary element a can be written as ~ = uao 
and D(a) as D(u)D(ao )' Taking the pqth element, mul
tiplying by Dk(uao):,. = (6k(u)(3k)!,,., using the ex-
plicit form of D .. (a), and summing over u, we have 

N/2 ~ (D(u)D(a o»pq(6k(U)(3k)!.n 

= u;.pUlq + Ulm,pUln.q 

+ ... + U(~-l)d+m,pl'<~-l)d+n,q. 

We rearrange the left-hand side as 

and, using (6), we have 

6 D(ao)Xq(3::[U!puyX + Ulm.pUd+y.x 
xy 

+ ... + U(~-l)d+m,pU(l-1)d+y,x] 

Multiplying by U bd+m,p' summing on p, and using the 
orthogonality relations of the rows of U gives 

Ubd+n•q = 6(3 ~nUb*d+y.xD(ao):q, (7) 
xy 

where b = 0, 1, ... , 1 - 1. Relation (7) is the addition
al condition imposed by (5) on the elements of the 
matrix U calculated from (6). 
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TABLE I: Corepresentations of the unitary subgroup C30 and 8. 

E C3 q 
D1 

D2 

D3 C J C J ( J 
D4 C J (-€ -J C J 
D5 C J (1 -J C J 
B. Type II corepresentations 

We assume that a Type n irreducible corepresenta
tion Dk of dimension 2d appears 1 times in Dr' From 
(4), the 2ld rows of U associated with these corepre
sentations are calculated from 

d '" () k()* - U* U + U* U NI2 L;j D U pqt::.. U mn - m,p n,q d+m,p d+n,q 

6
0 

-1 

C 
C 
C 

61 
0 6p 

1 

-1 -1 

1) C €2) 
C2 

€) 

i) C €2i) 
C2i 

€i) 

-J Ci 
J ( -) 

€ = e i2 11'/3 

and 

d N7J. L; D(u)pqt::..k(acluao)mn 
u 

+ " , + U(~I-l)d+m.ihl-l)d+n,q 

8 

eiljl 

ei(; 

Ci. €iO) 

( . e
i
") 

-e'« 

C -1) 

(9b) 

+ ... + U<'~I-l)d+m,pU(21-1)d+n,q' (8) 

From (5) one derives the additional conditions impos
ed on the elements of U calculated from (9a), (9b) to 
be 

From (5) one derives the additional conditions on the 
elements of U calculated from (8) to be 

for b = 0, 2, 4, ... , 21 - 2. 

C. Type III corepresentations 

We assume that a Type ill irreducible corepresenta
tion Dk of dimension 2d appears 1 times in Dr' From 
(4), the 21d rows of U associated with these corepre
sentations are calculated from 

U bd+n,q = ~ Utb+l )d+n,x D(ao)x~' 

where b = 0,2,4, ... ,21- 2. 

IV. EXAMPLE: e3V WITH TIME REVERSAL 

(10) 

We calculate the matrix U which transforms into re
duced form the direct product D3 X D3 X D5 of irre
ducible corepresentations of the nonunitary group H = 
C 3v + c3v e, where ao = e, i.e., time reversal. The 
irreducible corepresentations of this nonunitary group 
are given in Table I. The corepresentations are all 
of Type I with the exception of D 5 which is of Type m. 
Using relation (2), one finds that the requced form 
contains the irreducible corepresentations D4 and D5 
each two times, i.e.,D3 X D3 X D5 = D4 + D4 + D5 + 
D5. To calculate U, we first use (4). Specifically, to 
calculate the first four rows of U corresponding to 

+ ... + U(ill-2)d+m,ibl-2)d+n,q (9a) 

the two D4( u) appearing on the right-hand side of (4), 
we use relation (6), and for the last four rows, corres
ponding to the two D 5( u), we use relations (9a), (9b). 
The matrix U so derived is 

o 

o o 

o 

o 

o 

o 

o 

(cll/.f2 )e ir 

o 

o 

o 

o 

(c12/.f2 )eH1 

o 

o 

o 

o 

(cll/.f2 )e iT 

o 

o 

o 

o 

- (c12/.f2 )ei!l 

o o 

o o 

0 o 

o 

o 

o (dll/f2 )eiy (d12/f2 )e iv - (dll/f2 )eiy (d12/f2 )e iv 0 

o 

o 
o (c 2d.f2 )e iT (c22/.f2 )ei!l 

o o (d 2d..f2 )eiy (d 22 /..f2 )e iv 

where (b ll b 12), (c ll C 12\, and (dll d 12), are unitary 
b21 b 22 \,,21 C22j d 21 d 22 

matrices,8 and t::.., 0, T, n, y ,and v are arbitrary 
phases. 

J. Math. Phys., Vol. 14, No. 11. November 1973 

(c2d.f2 )e iT - (C22/.f2 )ei!l 0 o 
- (d 2d.J2)e iy (d22/rz )e iv 0 o 

The additional conditions imposed by (5) due to the 
antiunitary symmetry for the rows of the matrix U 
corresponding to the corepresentations D4 are de
rived from relation (7), and for the rows correspond-
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ing to the D5 from relation (10). From (7) we derive 
the additional conditions 

b j2 e i f:>. = bjlei(a-2~-6), (11) 

where j = 1,2. From (10) we derive the additional 
conditions 

cjleiT = d;2e-i(2~+v), 

0 0 0 0 

_ e i6 0 0 

0 0 0 0 

'f iei(a-2~-B) 'f ie iB 0 0 
1 

-
,f2 0 0 dt2e-i(2 l/I+v) dt 1 e- i (2 l/I+y) 

0 0 d
ll 

eiy d 12e ilJ 

0 0 d~2e-i(2 l/I+v) dh e- i (2 ~+'Y) 

0 0 d 21 eiy d 22e ilJ 

where (d u d 12\ is a unitary matrix and (3, lI,and yare 
\d 21 d24 

arbitrary phases. 

By using the additional conditions imposed by (5), the 
ambiguity of the matrix U calculated from (4) has 
been greatly reduced. From three two-dimensional 
unitary matrices and six arbitrary phases, we have 
now only a single unitary matrix and three arbitrary 
phases. 
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c j2e iO = djl e- i (2l/1+Y), (12) 

where j = 1,2. In addition, from the unitarity of the 

matrix (b ll b 12) and (11), one derives that bll = 
b 21 b22 

1/.f2 eiE and b12 = ± i bu , where ~ is an arbitrary 
phase factor. By using conditions (11) and (12), and 
writing (3 = ~ + Ii, the matrix U takes the form 

0 0 ei(a -21/'-6) _ e iB 

0 0 0 0 

0 0 'f ie i (a-2./rB) ± ie i6 

0 0 0 0 

dt2e - i (2l/1+V) - dt 1 e- i (2 l/I+y) 0 0 

- dlleiy d 12e iv 0 0 

d~2e-i(2l/1+u) - dh e- i (2 .p+y) 0 0 

-d21e i y d 22e iu 0 0 
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A general expression is found for the anticommutator of the L ~ matrices that occur in S L (2, C) 
invariant wave equations. The formula is valid for a broad class of representations which includes, 
besides the Dirac and the Majorana representations, many other infinite and finite dimensional 
representations. Several related properties of the L ~ are studied and some applications are given. 

1. INTRODUCTION 

As the fruit of pioneering work by Dirac, Kemmer, 
Bhabha, Majorana, Gelfand, Yaglom, and many others, 
today we possess a deep understanding of the algebraic 
structure of SL(2, C) invariant wave equations. The 
salient features of the theory are beautifully summa
rized in Chap. 11 of Ref. 1. An equation of the form2 

(L~P~ + K)1/I(p) = 0, 

where the L~ and K are finite-or infinite-dimensional 
matrices,3 is found to be covariant under the SL(2, C) 
group provided 

(1.1) 

and also [JIIO, K] = 0. Here the JjJo denote the generators 
of SL(2, C) which obey the familiar Lie algebra. 

Condition (1.1) implies4 that the irreducible compo
nents which are contained in the SL(2, C) representation 
space to which the wave function 1/1 belongs, must be 
interlocking. Let us recall that two irreducible repre
sentations5 T = (lo' 11 ) and T' = (la, I]) of SL(2, C) are 
said to be interlocking if either 

or 
(lo,ll) = (lo ± I,l l ) 

(1o, Ii) = (l0,11 ± 1). 

(1.2a) 

(1. 2b) 

If one now introduces the additional requirement6 that 
the wave function space should be precisely a (generally 
speaking reducible) representation of the SL(2, C) group 
[Le., that the set of basis functions should be completely 
labeled by the SL(2, C) canonical labels], then a new fea
ture emerges: the Lie algebra of the JIIO and V opera
tors must close and becomes exactly that of Sp(4,R). 
This means that in addition to (1. 1) and the familiar 
[J,J] ~ J commutators, we also have 7 • 8 

(1.3) 

We note that,denoting the generators of Sp(4,R) byJab 
(a, b = 0,1,2,3,4) and setting 

LII =J411, (1. 4a) 

Eqs. (1.1), (1. 3), and the SL(2, C) commutators can be 
<:ondensed to read 

[Jab ,Jed] = i(gbc Jad _ gac J bd _ gbdJac + gadJbc), (1. 4b) 

whereg44 =gOO = _gkk = 1, gab = ° for a'" b. The 
major consequence is that JabJ ab is an invariant, i.e., 
it is a multiple of the identity. [To see this, we must 
also recall that, by assumption, the components of 1/1 are 
uniquely labeled by SL(2, C) indices, so that the Sp(4,R) 
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representation must be irreducible.] 

In this paper we concentrate only on the situation when 
the said requirement on the 1/1 space is met, so that Eq. 
(1.3) is valid and J abJab is a multiple of the identity. 
In passing, we note that, except for a few cases (such as 
the Dirac, Kemmer, 20-component Bhabha equations), 
Eq. (1. 3) is incompatible with (p2 - K2) 1/1 = 0, so that, 
in general, we will have a mass spectrum. 

In all physical applications the L II operators playa 
crucial role. It is, therefore, most desirable to estab
lish as many algebraic properties for them as possible. 
Unfortunately, apart from the fundamental relations (1.1) 
and (1. 3), no general statements can be made. Of course, 
it is true that (Cf. Ref. 1) for any given definite choice of 
interlocking representations, the Lil can be calculated 
and specific cases treated. Thus, for example, one finds 
for the Dirac case [corresponding to the pair (1/2,3/2) 
~ (- 1/2,3/2)] the familiar Dirac algebra9 {LII, U} = 
(1/2)g~v; for the Kemmer case one obtains the Kemmer
Duffin algebra; and for the infinite dimensional Majorana 
case one finds 10 

where Wv is the Pauli- Lubanski vector [so that for 
p2> 0, one has (V PII)2 = p2 (I + 1/2)2 J. 

The primary purpose of this paper is to derive, for a 
broad and important class of representations, a general 
relation for the anticommutator {L II, LV}. The class of 
representations for which our result holds will be called 
the class of strongly interlocking representations and is 
defined as follows: 

Definition: A (reducible) representation R of SL(2, C) 
is called strongly interlocking if (a) it consists of inter
locking irreducible representations and (b) for each par
ticipating irreducible component the value of 15 + l~ is 
the same. 

Observe that condition (b) implies that all irreducible 
components of R have the same first Casimir invariant 
ltl + lr - 1,hence (1/2)J vJ~v is represented in R by a 
multiple of the identity. Furthermore, from Eqs. (1. 2a, 
b) it follows that in strongly interlocking representation 
there must exist either a component (1/2,11 )(11 arbit
rary) which then interlocks via the scheme (1. 2a), or 
there must exist a component (lo, 1/2)(10 arbitrary) 
which then interlocks via scheme (1. 2b). If we make 
the additional restriction that the strongly interlocking 
R contains only one pair of irreducible components, then 
the following representations qualify: 

(1/2,n/2) ~ (- 1/2,n/2) 

(1/2, 11) ~ (- 1/2,11) 

(n 2: 3, odd integer), (1. 5a) 

(l1 arbitrary complex), (1. 5b) 
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(lo, 1/2) ~ (lo,- 1/2) (lo integral or half-integral), 
(1. 5c) 

(0, 1/2) ~ (0,- 1/2) (1. 5d) 

(1/2,0) ~ (- 1/2,0). (1.5e) 

Here (1. 5a) describes a finite-dimensional represen
tation with spin content 1 = 1/2,3/2 ... (n - 2)/2. Case 
(1. 5b) and (1. 5c) are infinite-dimensional representa
tions [used for describing particle towers with positive 
definite energy (l1 imaginary) or positive definite charge, 
respectively]. Finally, (1. 5d), (1. 5e) are the celebrated 
infinite-dimensional Majorana representations for integ
ral (half-integral) spin towers of particles (which have 
both positive definite charge and energy).ll 

If we do not impose (the unnecessary) restriction that 
R contains only one pair of components, then additional 
strongly interlocking representations can be found, for 
example,12 

(1/2, 1/2) ~ (1/2, - 1/2) ~ (- 1/2, - 1/2) (1. 5f) 

or 

(1/2, 1/2) ~ (1/2,- 1/2), 

$ t (1. 5g) 

(- 1/2, 1/2) ~ (- 1/2),- 1/2). 

We are now prepared to formulate our main result: 

Theorem: In any strongly interlocking representa
tion, 

or alternatively 13 

where 10 , II are the labels of any participating irredu
cible component. 

The proof of this theorem crucially depends on the 
following: 

Lemma: In any strongly interlocking representation 
Lp L p is a multiple of the identity. 

Proof of Lemma: We write the Sp(4,R) invariant in 
the form (a, (3 = 0,1,2,3) 

inv=JabJab =JcxbJcxb + J 4b J4b 

= JcxsJaS + J cx4Jcx4 + J 4BJ4B. 

In view of (1. 4a), the second and third terms are pre
cisely L L p. Since, in a strongly interlocking represen
tation,J:BJcxS is an invariant (i.e., a multiple of the 
identity), it follows that L p L P has the same property. 

QED 

The obvious importance of our lemma is that, for 
strongly interlocking representations, the scalar L p L p 

commutes not only with J Il ,,; it also commutes with all 

L Il · 
An immediate, useful consequence of this is that 

(1.7) 

which relation follows from (1.3) and from [LPLp,LIl]= 
O. With the help of (1. 1) this relation yields 

J "Il LIl = (3/2) iLv and LIlJ VJl = - (3/2) iLJI . (1. 8) 
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2. PROOF OF MAIN THEOREM 

Inserting (1. 3) into (1. 1) and then multiplying from 
the right (left) by L T , we get the two equations 

LIlLoLVLT - LOLuL"LT - LVLIlLoLT + LVLoLIlLT 

=goVLJlLT _gllvLoLT, 

LTLIlLoL" - LTLoLIlL" - LTL"LIlLo + LTL"LoLIl 

=go"LTLP. _gP."LTLo. 

We contract both equations with g 9 T and use the fact 
that L p L p commutes with all LO. In this manner (using 
also the symmetry of gOT) we obtain, upon adding the 
two resulting equations, 

gOT (J/IJO JVT + J"T J p.o) = gOTgO"{LP., LT} - gil "goT {LO, LT}, 

where, on the left-hand side, we also used Eq. (1. 3). 
Elementary manipulation gives 

(2.1) 

Contracting with g IlV we obtain 

LJlLIl = (1/3)J oT JoT = (2/3)(1~ + l~ -1). (2.2) 

Combining (2.2) and (2.1) we finally find precisely 
Eq. (1. 6). QED 

In passing, we point out that Eq. (2.2) itself is very 
useful: it fixes the numerical value of the invariant 
L LIl. For example, in the Dirac representation9 (Lf.J = 
IJ2y

Jl
),it gives the familiar valueYp.yl& = 4,and in tne 

Majorana representations (LIl = rll)' it gives 14 rllr ll = 
- 1/2. 

3. SOME APPLICATIONS 
A. Relation between p2 and W2; the mass spectrum 

It is clear that the generic result (1. 6a) will repro
duce particular formulas that have been previously ob
tained by elaborate ad hoc calculations. We already 
pointed out at the end of Sec. 2 that we now have an easy 
method to evaluate LIlL Il . 

Similarly, from our theorem we can calculate the ex
pression (L .p)2 == (LIlP )(L"P v) without knowing any 
explicit representation for the LP. matrices. Using (1. 6) 
and (1.3) and noting that by symmetry J Jl"PIlP" = 0, we 
get 

(Lp)2 = LJlL"Pp.P" = (1/3)Jpo Jpop 2 - JIlPJ/JpPIlP". 

Recalling that 

W2 =- (1/2)JpoJPop2 +JJlPJ"pP", 

we can write more conveniently, 

(Lp)2 = _ (1/6)JpoJPop2 - W2 

=- (1/3)(l~ + l~ _1)p2 - W2. (3.1) 

This is the generalization of the Takabayashi-Stoya
nov- Todorov formula which holds in every strongly in
terlocking representation. In particular, for the Majo
rana representations l~ + l~ - 1 = - 3/4, so that we get 
back the specific result of Ref. 10. 

The primary importance of (3.1) is that it allows the 
determination of the mass spectrum in any strongly in
terlocking representation. Applying (L .. P" - K) onto the 
wave equation and using (3.1) [assuming p 2 == m 2 > 0, 
so that W 2 ltt = - m 2 l(l + 1)], we have 
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m 2 = K2/[l(l + 1) - (1/3)(l~ + l~ - 1)]. (3.1') 

In passing we note that this result does not necessarily 
mean a descending spectrum: if, for example, K2 = (ap2 + 
b)2 (cf. footnote 3), solution of (3.1') for m gives an as
c.ending branch. 

B. Properties of L 0 

From (1. 6) we obtain 

(LO)2 = (1/3)J oT JoT + JOIlJOk ' 

Introducing the notations 

J = (J 23,J 3l,J 12)' 

N= (JOVJ02,J03) 

and noting that (1/2)Jpo J po = J2 - N2, we obtain 

(LO)2 = - (1/3)(15 + l~ - 1) + 1(1 + I), 

(3.2) 

(3.3) 

where l{l + 1) are the eigenvalues of J2. Thus, we have 
the interesting result that for any strongly interlocking 
representation L~ is diagonal in the canonical basis, 
although it is not a multiple of the identity (except for 
the Dirac representation which has only one value for I). 

Moreover, we may obtain information on the spectrum 
of L o, and observe that the magnitudes of its eigenvalues 
are given by15 

ILol = [- (1/3)(1~ + l~ - 1) + 1(1 + 1)]1/2. (3.4) 

We remind the reader that the knowledge of Lo or its 
spectrum is needed in the calculation of the charge 
operator or of the parity operator.16 

C. Relations between tensor operators 

The irreducible parts of LIl LU can be isolated and we 
have 

LIlU = 1/2[LIl,U] + (1/2{LIl,U} -1/4g llu LPLp) 

+ {1/4)gIlU LP Lp • (3. 5) 

The first term is the antisymmetrical tensor {-i/2)Jllu. 
The last term is the scalar whose explicit form is given 
by (2. 2). The middle term can be rewritten with (1. 6) 
and (2.2) to yield the traceless symmetrical tensor 

Sllu = (1/4)glluJoT JoT - {1/2)goT{Jllo,JuT} 

= (1/2)(l~ + Ii - 1) - (1/2)goT {JIlO,JUT}. 

It is not difficult to systematically analyze higher 
order tensor operators in a similar fashion. 

D. Bilinear covariants of the extended Lorentz group 

(3.6) 

The simplest examples of strongly interlocking repre
sentations, in particular those listed under (I. 5a) 
through (I. 5d), have the important property that they 
also furnish a representation of the extended Lorentz 
group. Indeed, these representations satisfy the cri
teria17 discussed in Part II, Sec. 3 of Ref. 1. Thus, a 
parity operator S, a time reversal operator T, and a 
total reflection operator J = TS can be constructed in 
the standard manner as discussed in Ref. I. Further
more, the criteria given in Ref. 1 for the existence of 
an invariant nondegenerate bilinear form of wave func
tions are also met18 by our representations (1. 5a)-
(1. 5d). Therefore, we may construct the usual bilinears: 

the scalar 
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the pseudoscalar 
the vector 
the pseudovector 

the tensor 
the pseudotensor 

(TI/I, 1/1) , 
(LP 1/1,1/1), 
(TLPI/I,I/I), 

(L Il U 1/1, 1/1), 
(TLIl LUlJ;, 1/1), 
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and so on. Finally, for finding the irreducible parts of 
the last two quantities (or of higher order tensors) we 
can use our main theorem. 
*On leave of absence from the Universidad de Madrid. Supported in 

part by a grant from G.I.P.T. 
II. M. Gelfand, R. A. Minlos, and Z. Ya. Shapiro, Representations of 

the Rotation and Lorentz Groups and Their Applications (Pergamon, 
New York, 1963). 

2We use the metric goo = - g kk = I, g ~v = 0 for /L =1= v. Summation 
over dummy indices is always understood. 

3The K need not be independent of p. Por example, in the 
Nambu-Pronsdal equation K = a p 2 + b, where a and b are real 
numbers. In most familiar cases (like the Dirac or Majorana equation) 
K is simply a multiple of the identity operator. 

4Here we also imply that K =1= O. 
5We use the notation of Ref. I. In terms of 10 and II the two Casimir 

invariants of S L (2, C) are given as (1/2)J ~J~v = I~ + Ii - 1 and 
(1/4~~VpCTJ~vJPCT = 2ilo/ l . 

~here is no compelling reason to do this. Por example, the set of 
components of IjI may carry a representation of the Poincare group, or 
a representation of a semisimple group larger than S L (2, C) [such as 
S U(2, 2)], or even a more unusual nonsemisimple group [such as 
S L (2, C) X S 0(3,2)]. Por a survey, see L. Castell, Nuovo Cimento 
A SO, 945 (1967). 

7If the above condition on the IjI space is not required, then the J, L 
algebra mayor may not close and if it closes, we may have 
commutators [L, L] different from (1.3). Por details, see L. Castell's 
paper in Ref. 6. 

8Equation (1.3) is not given in Ref. 1 but, apart from general 
arguments, it can be also directly verified if one uses the explicit 
construction of the L ~ as given in Ref. I. On the other hand, the 
remarkable book by E. M. Corson [Introduction to Tensors, Spinors, 
and Relativistic Wave-Equations (Blackie, London, 1954)] pays special 
attention to the closing relation (1.3) (cf. in particular, Sec. 36). This 
book is also highly recommended for a survey of the older literature. 
See also the article by L. O. Raifeartaigh, in Battelles Rencontres, 
1970 (Benjamin, New York, 1971). 

9The customary Dirac matrices 't~ are related to the L ~ by 
L ~ = (1/2)y~. This means that the mass constant in the standard 
Dirac equation is one-half of the K that occurs in the generic 
equation. 

10Apparently, this relation was first derived by T. Takabayashi, cf. 
Proceedings of the 1967 International Conference on Particles and 
Fields, (Interscience, New York, 1967) p. 413, and by D. Tz. 
Stoyanov and I. T. Todorov, J. Matl:t. Phys. 9, 2146 (1968). 
The corresponding relation in the Dirac case is (LJlp /i)2 = 
(I/4)p2. 

lIThe two Majorana representations are the only possible 
self-interlocking representations. Indeed, (0, - 1/2) is equivalent to 
(0,1/2) and (- 1/2,0) is equivalent to (1/2, 0). The strongly 
interlocking criterion is trivially satisfied. 

12These representations are infinite dimensional and nonunitary. We 
note here that the representations (1.5c) are also nonunitary, and so 
are those belonging to class (1.5b) unless II is pure imaginary. 
Naturally, the finite dimensional representations (1.5a) are nonunitary. 

13Recall that (1/2)J CTTJCTT is a multiple of the identity in a strongly 
interlocking representation. 

I'This result has been first obtained with the laborious use of an explicit 
representation, cf. Ref. 10. 

15Por example, in the Majorana representation we obtain the familiar 
result IL'~ = I + (1/2). 

161t is well known that, in the general case of an S L (2, C) 
representation, the parity operator is proportional to exp(i 1T L 0)' See, 
for example, p. 152 of Corson, Ref. 8. 

17Por Case (1.5b), this is true only if we take II =1= O. 
18Por Case (1.5b), this is true only if II is either pure real or or pure 

imaginary. 
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The thin-sandwich conjecture for Einstein's field equations of general relativity is discussed. Three of 
the four initial-value equations of general relativity are considered. This system of three equations is 
shown to have an integrability condition when the spatial metric, its time rate of change. and the 
lapse function N are given. The nature of this integrability condition is discussed in detail. It is also 
noted that this integrability condition can be expected to play a significant role in any proof of 
existence for a thin-sandwich problem in which the spatial metric and its time derivative are chosen 
arbitrarily. A local proof of existence is given for the first three thin-sandwich equations. The proof 
allows the spatial metric components, their time rate of change, and the lapse function N to be 
chosen arbitrarily. No coordinate conditions of any kind are used in the proof. 

I. THE THIN-SANDWICH CONJECTURE OF GENERAL 
RELATIVITY 

The thin-sandwich conjecture of general relativity was 
first postualted in 1960. Since that time, this conjec
ture has been examined by a number of authors, 1- 3 but 
no proof of the conjecture in its original form has been 
obtained. The conjecture states that given the spatial 
metric and its time rate of change on a spacelike 3-
surface, there always exists a solution to Einstein's 
field equations. [It is assumed here that in addition the 
energy-momentum tensor TJlv (x) is given throughout 
all space-time.] A proof of the conjecture in its ori
ginal form would show (a) that there does exist for the 
gravitational field a natural set of field coordinates and 
corresponding field velocities which can be chosen arbi
trarily on a space-like 3-surface, and (b) that the field 
coordinates may be chosen to consist of the spatial 
metric components on a space like 3-surface. 

The purpose of the present paper is to point out an 
important theoretical feature of the original thin
sandwich problem which has heretofore been overlooked. 
A new thin- sandwich equation has been found. This 
equation is an integrability condition associated with the 
first three thin-sandwich equations. It plays the same 
role with respect to the first three thin-sandwich equa
tions as is played by the energy-momentum conserva
tion law with respect to Einstein's equations. Further
more, the fact that an integrability condition is associated 
with the original thin-sandwich problem means that a 
direct application of the familiar Cauchy-Kowalewski 
existence theorem is inadequate for a discussion of this 
problem. A completely satisfactory proof of existence 
requires the more general existence theorems of 
Riquier4 - 7 or Cartan. 

Several modified forms of the thin-sandwich conjec
ture have been proven recently. It will be useful to 
compare these results with the results described here. 
The original conjecture requires that the proof admit 
12 specific arbitrary functions, namely the six spatial 
metric components Yij and their six time derivatives 
Y i' 4' Bruhat's thin- sandwich proof required the im
p6sition of coordinate conditions and therefore did not 
admit 12 arbitrary functions. The recent proof of 
Komar2 avoids any coordinate conditions and therefore 
admits 12 arbitrary functions. It thus represents a con
siderable advance over earlier work. Komar uses a 
canonical transformation to change the thin-sandwich 
equations into a more convenient form. However, 
because of this canonical transformation, Komar's proof 
does not allow the spatial metric and its time rate of 
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change to be chosen arbitrarily. Rather, Komar's ar
bitrary functions are the quantities (yp-2)y ij and their 
time derivatives. (Here p is the trace of the canonical 
momentum and Y is the determinant of the spatial me
tric.) Komar'S arbitrary quantities become singular 
when p = 0 and this leads to difficulties. Komar has 
stated that his canonical transformation changes the 
thin-sandwich equations into an elliptic system of equa
tions. However, this is not the only effect of the trans
formation. The quantity p contains first derivatives of 
the shift functions Ni • The consequence of this is that 
Komar's transformation 

introduces new second derivatives of the Ni into the 
three thin-sandwich equations 

pij . = O • 
• J 

As a result, the structure of these equations is chang
ed to such an extent that they nO longer possess an 
integrability condition. 

Bergmann3 has noted that Komar's transformation 
can be greatly generalized. Bergmann shows that ellip
tic equations will result for a very wide choice of 
arbitrary functions. Bergmann's arbitrary functions 
are the five conformal metric components y-1 / 3Yij> 

their five time derivatives, and the one quantity y = 
F(y,p) and its time derivative. Here F(y,p) is unrestrict
ed except for the requirement aF/ap ;" O. In addition to 
the production of elliptic equations, Bergmann's trans
formations also change the equations to new equations 
which possess no integrability conditions. The reason 
for this is the same as for Komar's transformation. 

York has also advocated the use of the conformal 
metric in the initial value problem. 8 Working indepen
dently, York9 was also led to a treatment of the thin
sandwich problem in which the five conformal metric 
components and their time derivatives are chosen ar
bitrarily. York chooses as the last two arbitrary func
tions the quantity py-l/2 and its time derivative. York's 
procedure also produces elliptic equations and removes 
the integrablity condition. (The reason for this is again 
the same as for Komar's procedure.) York then gives 
a detailed discussion of the Dirichlet problem for his 
elliptic system of equations. 

The interested reader should examine carefully the 
effect of Komar's transformation by applying the trans
formation to Eqs. 7-3. 15a and 7-3. 15b of the article by 
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Arnowitt, Deser, and Misner in the book edited by L. 
Witten (1962) (see Ref. 1.) One more point should be 
understood when comparing the present paper with the 
discussion of Komar. In Komar's paper2 the system 
of equations considered consists of ten equations, the 
six equations defining Pij in terms of Yij.4 plus the four 
initial value equations written in terms of the P ij' 
Komar'S transformation allows one to write these ten 
equations as five second-order differential equations 
plus five equations defining the traceless part of the 
quantity Pi" (See Komar, Ref. 2, Eq. 3.10). In the present 
paper, on the other hand, one is to imagine that one has 
already substituted for the Pi.i. to obtain four equations that 
are second order in the Ni. Also, instead of the PiP I 
use a closely related quantity Qij' 

One more point should be made here. Komar2 and 
Bergmann3 prove formal ellipticity for their modified 
thin-sandwich problems, but they do not attempt an ex
plicit proof of uniqueness and stability. 

This ends the discussion of the work of previous 
authors on various modified thin-sandwich theorems. 
In the remainder of this paper the term "thin-sandwich 
problem" will be used to refer to the original thin
sandwich problem in which the Y.ij and their time de
rivatives are chosen arbitrarily. 

II. DERIVATION OF A FIFTH INITIAL VALUE 
EQUATION FOR THE GRAVITATIONAL FIELD 

The thin-sandwich problem of general relativity con
sists of the four equations 

[N-l(Qij - yljQmm)l;j = 81T N-1Si, 

(Qii)2 - QiiQij - (N)2Ji = 161T(N)2T44' 

where 

and 

(la) 

(lb) 

(2) 

Si = yki(N)2T4k with i = 1,2,3, j.L = 1, ... ,4. (3) 

Here Y i' is the spatial metric tensor and the T4" are 
components of the energy-momentum tensor TU". The 
quantity Qij is proportional to the extrinsic curvature 
of the three-surface. 10 If one writes g"u for the metric 
of space-time, then 

(4a) 

(4b) 

(4c) 

Note that covariant differentiation is with respect to 
Yij' Raising and lowering of indices is done using Yij' 
O1.lr notation for the spatial metric is taken from the 
discussion of York. S - ll We denote the spatial Ricci 
tensor for~ed from the Y ij by Jik m and the spatial Ricci 
scalar by R. 

Equations (1) are the initial value equations of the 
gravitational field. 11 A precise definition of the thin
sandwich problem is as follows. 

Thin-sandwich problem: Show that for every set of 
given functions Y ij and Y Ij.4 there always exists 
a corresponding set of functions Ni and N such that 
Eqs. (1) are satisfied. 
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The first three initial value equations, Eqs. (la), can 
be written out explicitly as follows: 

N [II;jl -N-IN [N(";j)-y" jy. N(i;m)-ellj] 
;j;j un 

-li"jN. - e"j .. = - 811S" (5) 
J .J 

where we have made use of identity 

(6) 

Also note that 

(7a) 

and 

(7b) 

It is now possible to derive a new thin-sandwich equa
tion by taking the divergence of Eq. (5) and then using 
Eq. (5) to eliminate the remaining second derivatives 
from the result. This procedure is equivalent to an 
application to Eqs. (5) of Riquier's general procedure 
for the derivation of integrability conditions. The re
sulting equation 

[.RlljNjl;1I + N-IN;j;n[N(n;j)- yjnYtmN(t;m)- ellj] 

+ e"j ;j;n = 811N-l (NSj);j (8) 

is the integrability condition associated with the restrict
ed thin-sandwich problem. Here 

(For a precise definition of the term "integrability con
dition" ,and a discussion of Riquier's procedure, see 
Refs. 4-6). 

Note that Eqs. (5) involve second derivatives of the 
Nt. However, because of the identity 

[Ni;j - Nj;i] .... = O. 
,1. , 

Equation (8) involves only first derivatives of the Nt. 
Thus Eq. (8) has the following properties 

(a) It is algebraically independent of Eqs. (5) and also 
independent of Eqs. (lb). 

(b) It can be derived fTom Eqs. (5) by differentiation. 

(c) The highest derivative of the Nt contained in 
Eqs. (8) are first derivatives. 

(d) The highest derivatives of N contained in Eq. (8) 
are second derivatives. 

These properties (which can be verified by inspection) 
are by themselves enough to imply that Eq. (8) is the 
integrability condition for the system (5). 

Note that Eq. (8) does contain third derivatives of the 
form Y ij.4mn' But in the thin-sandwich picture, the 
Yij.4 are given functions so the quantities Yij.4mn may 
be thought of as given beforehand. 

It appears that Eq. (8) is being published here for the 
first time. 12 In terms of the Q ij' the identity may be 
written 
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[Qij _ yijQm 1 .... _ N-lN .... [Qij _ yijQm ] 
mi.]., .'d m 

where the Qij satisfy Eq. (2). 

The significance of Eq. (8) may be summarized by a 
comparison with Einstein's equations. Einstein's equa
tions 

(10) 

imply the energy-momentum conservation law 

TjlV;V=O. (11) 

Equation (11) is the integrability condition corresponding 
to Eqs. (10) when the quantities Tjlv(x) are given. 5•B 

Equation (8) is the integrability condition associated 
with the restricted thin-sandwich conjucture. Thus 
Eq. (8) plays the same role with respect to Eqs. (la) as 
is played by the energy-momentum conservation law 
with respect to Einstein's equations. 

Equation (8) is algebraically independent of Eqs. (1). 
Furthermore it is unique in the same sense that the 
energy-momentum conservation law is unique. It thus 
deserves full status as a fifth initial value equation. 

Once Eq. (8) has been derived, it becomes possible 
to prove the restricted thin-sandwich theorem as fol
lows. Replace the system (la) by the equivalent system 

first members 
NA.33 (12a) 

N3. 3 (12c) 

where the Qij and the Si are defined in Eq. (2) and 
Eq. (3), and A = 1,2, and where it is assumed that 
R33 '" O. Also note that the initial value 2-surface x 3 = 
o is assumed here to be noncompact. 

The method used here is analogous to Lichnerowicz's 
proof of the existence of solutions to Einsteins' equa
tions by the use of the contracted Bianchi identities. 13 

Note that Eq. (12b) is an initial value equation on the 
two surface x 3 = O. The remaining equations (12a) and 
(12c) satisfy the requirements of the Cauchy-Kowalewski 
existence theorem. They can be thought of as determin
ing the derivatives shown beside each equation and 
referred to as first members. An application of this 
existence theorem to Eqs. (12) now proves the restrict
ed thin-sandwich theorem stated above. (The given func
tions are assumed to be analytic and existence is proven 
only locally.) Note that no coordinate conditions of any 
kind have been used in the proof. 

The preceding proof of existence has a number of 
useful consequences, From the form of the first mem
bers of Eqs. (12) one can determine all the arbitrary 
functions in ~he solution of the restricted thin-sandwich 
problem. In addition to the thirteen functions of three 
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variables Yij'Ylj~~,N, there are the four functions of 
two variables (Ni)~3 =0' (Nl 3)%3 =0' and the one function 
of one variable (N .3)%3 =%2 ='0' 

Note how the existence of the integrability condition 
(8) has the effect of converting one of the thin-sandwich 
equations into a constraint on the permissible initial 
values for the Ni given on an initial 2-surface. This 
means that there will be some choices of initial condi
tions on the 2-surface which will be incompatible with 
local existence of a solution to the thin-sandwich pro
blem. Of coorse, this does not prevent the existence of 
local solutions when a correct choice of initial conditions 
is made. 

Furthermore, Eq. (8) is the only consequence of 
Eqs. (la) which contains no derivatives of the Ni higher 
than first derivatives. For if any other such equation 
existed and was algebraically independent of Eq. (8) it 
would change the nature of the arbitrary functions de
scribed above and thus contradict the proof of existence 
just completed. 

Since it has now been demonstrated that the first 
three thin-sandwich equations admit the 13 arbitrary l4 

functions Yij'Yij.4' N it is natural to ask if the addition 
of the fourth thm-sandwich equation, Eq. (lb), to the 
system has the effect of simply removing N from the 
list so that 12 arbitrary functions remain. A success
ful proof of this fact would prove the thin- sandwich 
conjecture locally. In an attempt to answer this question, 
the same techniques applied here have also been applied 
to the full system of four thin-sandwich equations (1). 
One can expect that the application of Riquier's methods 
will bring a new flexibility to the analysis. One can 
also expect that the four equations (1) will also have an 
integrability condition in the case where the spatial 
metric and its time derivative are given. Furthermore, 
this integrability condition should be essentially equiva
lent to Eq. (8). The results of this investigation into the 
full system of four equations (1) will be published else
where. 7 

Finally, it is of interest to note that in both Maxwell's 
and Einstein's equations, the presence of an integrability 
condition is associated with the existence of a gauge 
transformation which transforms one set of solutions of 
the equations into another. Since Eq. (8) is also an inte
grability condition, it is therefore natural to ask whether 
there is also some generalized gauge transformationl5 

associated with the thin-sandwich equations. A full in
vestigation of this question is currently in progress. 
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Depolarization of electromagnetic waves excited by 
distributions of electric and magnetic sources in 
inhomogeneous multilayered structures of arbitrarily 
varying thickness. Generalized field transforms 
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A suitable basis for the full wave expansion of electromagnetic fields in inhomogeneous multilayered 
structures of arbitrarily varying thickness is presented in this paper. To this end, we formulate 
appropriate sets of transform pairs for the transverse electric and magnetic fields. Since arbitrary 
distribution of electric and magnetic sources are considered, the complete expansion must be 
composed of both vertically and horizontally polarized waves. Each set of generalized transforms, for 
the vertically and horizontally polarized waves, consists of two infinite integrals (continuous 
spectrum) which correspond to the radiation and the lateral wave terms as well as a finite number of 
terms (discrete spectrum which correspond to the surface waves. For a general three-dimensional 
distribution of sources in any of the structure's layers, the transverse electric and magnetic fields are 
in general two component vector functions. Thus, the transform pairs involve vector rather than 
scalar functions. Exact boundary conditions are employed in the analysis rather than approximate 
surface impedance boundary conditions. When the boundary media of the structure are regarded as 
perfect electric or magnetic walls, or are characterized by surface impedances. the fields are expressed 
exclusively in terms of infinite sets of waveguide modes. 

1. INTRODUCTION 

Full wave solutions to the problem of electromagnetic 
wave propagation in inhomogeneous multilayered struc
tures of arbitrarily varying thickness were derived re
cently using Fourier-type transform pairs for the trans
verse components of the electric and magnetic fields.!·2 
These transform pairs provide suitable bases for the 
expansion of the electromagnetic fields in all the layers 
of the structure. 

However, only infinite line sources, oriented parallel 
to the layers of the structure, were considered. Thus, 
horizontal magnetic line sources excite only vertically 
polarized waves while horizontal electric line sources 
excite only horizontally polarized waves. For these 
cases, the vertically and horizontally polarized waves 
are completely decoupled and the problem can be solved 
in terms of scalar functions that represent the trans
verse electric and magnetic field components. 

In this paper, arbitrary three-dimensional source 
distributions are assumed and, for convenience, it is 
assumed that both electric and magnetic sources are 
present. In these cases, therefore, even when the layers 
of the structure are Uniform, both vertically and horizon
tally polarized waves are excited. In addition, the trans
verse electric and magnetic fields are in general two
component vectors. 

Problems of radio wave propagation in layered media 
are often solved in terms of electric and magnetic vector 
potentials or Hertz potentials. However, the manner in 
which one chooses to represent the electromagnetic 
fields in terms of potentials is not unique. Thus, for in
stance, the fields of a horizontal electric dipole may be 
expressed in terms of a two component magnetic vector 
(or Hertz) potential 3 or in terms of vertically oriented 
electric and -magnetic vector potentials in conjunction 
with a judicious use of the reciprocity theorem for 
electromagnetic waves. 4 

For three-dimensional electric current sources of 
arbitrary orientation, the two half-space problem has 
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been formulated rather elegantly in terms of dyadic 
Green's functions. 5 When magnetic sources are also 
conSidered, it is necessary to employ two such sets of 
dyadic Green's functions if this approach is to be used. 

In this work, we find it more convenient to work 
directly in terms of the transverse electric and mag
netic fields. To this end, we formulate two sets of 
transform pairs for the transverse electric and mag
netic fields which account for both vertically and hori
zontally polarized waves. Since the transverse fields 
are two components vector fields, the transform pairs 
involve vector functions rather than scalar functions. 

For the general problem conSidered, there is no par
ticular axis of symmetry for the fields; thus, we use a 
right-hand Cartesian coordinate system. For structures 
with uniform layers, it is possible to expand the fields in 
terms of the familiar two dimensional Fourier trans
forms associated with the variables in planes parallel 
to the layers of the structure x-z plane (see Fig. 1). 
However, since these transform pairs are to be applied 
to problems in which the thickness and the electro
magnetic parameters of the structure are assumed to 
vary along the x axis (see Fig. 2), we employ a combina
tion of the familiar Fourier and generalized Fourier 
transform pairs associated with the variables in the 
transverse y-z planes. The field expansions in terms 
of the generalized Fourier transforms consist of two 
infinite integrals (continuous spectrum) which corres
pond to the radiation and the lateral wave terms as well 
as a finite number of terms (discrete spectrum) which 
correspond to the surface waves.! The completeness of 
the expansion in terms of the generalized Fourier trans
forms and its relationship to the familiar Fourier trans
forms have already been established.! It is shown that 
the solutions obtained in terms of the field transforms 
are suitable for integration USing the steepest descent 
method. 

When vector (or Hertz) potentials are employed to 
solve these problems, one generally reduces the pro
blem to the solution of vector wave equations. However, 
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FIG. 1. Electric and magnetic sources distributed in the layers of a 
uniform multilayered structure. 
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FIG. 2. Electric and magnetic sources distributed in the layers of a 
nonuniform multilayered structure, 

using the transform pairs formulated in this paper, we 
reduce the problem to the solution of first order 
ordinary differential equations for the wave amplitudes. 
When the layers of the structure are uniform, these 
first order differential equations are completely un
coupled. 

2. FORMULATION OF THE PROBLEM 

We consider the excitation of electromagnetic fields 
in stratified media with an arbitrary number of uniform 
layers (see Fig. 1). The general three-dimensional 
sources are assumed to be distributed in any of the 
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(m + 1) media of the structure. Since it is often con
venient to represent uniform, infinitesimal electric 
current loops by magnetic dipoles, we shall also 
assume that both electric currents and charges, J and P, 
respectively, as well as magnetic currents and charges, 
M and Pm respectively, are present. An exp(iwt) time 
dependence is assumed. 

The ith medium of the structure is characterized by 
the electromagnetic parameters Ei and lJ.i' which, in 
general, may be complex. Thus, if the dielectric coeffi
cient and the conductivity of the medium are Eir and ui 
respectively, 

(2.1a) 

The interface between the layers i and i + 1 is given by 
the surface y = hi, i +1' The thickness of the ith layer is 

Hi =hi-1,i-hi,i+1> i=1,2, ... ,m-1. (2. 1b) 

To obtain an appropriate set of basis functions, we note 
that for vertically polarized waves Hy = 0 and for hori
zontally polarized waves Ey = O. Thus, we first obtain 
from Maxwell's equation a set of scalar inhomogeneous 
wave equations for the normal components Ey and Hy and 
express the horizontal components 

(2.2a) 

and 

(2.2b) 

in terms of the sources and the normal components of 
the electromagnetic fields. 6 Thus, for each of the m + 1 
media we get 

(V2 + k 2)Ey = iWIJ.Jy - .J- J- V oJ + VH· (MH x a ), lWE uy y 
(2.3a) 

( 2 2 1 a - -
V +k)Hy=iwEMy - iw a-V.M+VH.(ayxJH)' 

IJ. y (2.3b) 

( a2 + k 2\ EH = ~ VHEy - iWIJ.VHHy x ay oy2 / oy 

and 

a 

_ 0_ 
+ iWIJ.J - - (M 

H oy H 

= - VHH - iWEa x V E oy y y H Y 

_ a 
+ iWEMH - - (a 

oy y 
X~), 

in which the operators V and VH are defined as 

.." +- a - a - a _ a v=V a -=a -+a -+a-H y oy x ax z oz y oy • 

(2.3c) 

(2. 3d) 

(2.4a) 

In the ith medium E --7 Ei , IJ. --7 lJ.i and the wavenumber is 

(2.4b) 

For source-free regions, the solutions to the scalar 
wave equation (2. 3a), subject to the boundary conditions 
at each interface, 

EH(x,ht i+1'z) = EH(x,hi i+1'z) 
and' , 

HH (x, ht, i +1' z) = HH (x, hi, i+1'z), 

(2.5a) 

(2.5b) 
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can be expressed as 

EyO = exp(± iux)ZV(v, y)1/I v (v, y) exp(± iwz). (2.6a) 

For the ith layer 

(2.6b) 

and the basis function 1/1 V(v, y) satisfies the one-dimen
sional wave equation 

(2.7a) 

and the boundary conditions at each interface, 

(2.7b) 

and 

1 0 ./, V( h+ ) _ 1 0 ./, V( h- ) 
E; oy'l' v, ;,i+1 - E;+1 oy'l' v, i, ;+1 , 

i == 0,1, .•• ,m-1. (2.7c) 

The wave impedance Z V(v, y) for the ith medium is 

Z V(v, y) == Z{ == (u 2 + W 2 )/UWE;. (2. 7d) 

Similarly, for source-free regions, the solutions to the 
scalar wave equation (2. 3b), subject to the boundary 
conditions (2. 5), can be expressed as 

HyO == exp(± iux) yH(V, y)I/IH(v, y) exp(± iwz), (2.8) 

in which v is given by (2. 6b). The basis function I/IH(v, y) 
satisfies the one-dimensional wave equation (in each of 
the m + 1 media) 

C:2

2 + v 2
) I/IH(v,y) == ° (2.9a) 

and the boundary conditions at each interface 

(2.9b) 

and 

~ ~ ./,H(V h+ " 1) == _1_ ~y I/IH(v,h,~,'"+1)' 
J.J.i oy 'I' ", ,+ J.J.i+1 u 

i == 0,1, ... ,m-1. (2.9c) 

The wave admittance yH(V,y) for the ith medium is 

yH(V, y) == Yf = (u2 + w 2)/UWJ.J.i' (2.9d) 

The horizontal components of the electric and magnetic 
fields associated with the vertical components Ey and Hy 
can be derived from (2. 3c) and (2. 3d). 

For the purpose of our analysis, it is necessary to derive 
suitable expansions for the electric and magnetic fields 
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tangent to the transverse, y-z planes. To this end, we 
now construct the appropriate field transform pairs for 
the transverse electric and magnetic fields E T and HT 
('espectively, where 

ET(x,y,z) = Ey(x,y,z)o.y + Ez(x,y,z)o.z 

and 
HT(x,y,z) == Hy(x,y,z)a y + H.(x,y,z)o.z· 

(2. lOa) 

(2. lOb) 

3. THE FIELD TRANSFORM PAIRS FOR THE 
TRANSVERSE ELECTRIC AND MAGNETIC FIELDS 

In order to construct the expressions for the trans
form pairs for the transverse electric and magnetic 
fields ET and HT respectively, we employ the following 
completeness relationships for the one-dimensional 
Fourier transform: 

"( ) 1 JoO -iw(z-zo)d 
uZ -zo == 21T _oOE w,";nd 

"( ') 1 JoO iz(w-w')d 
u w - w = 21T _ 00 E Z, (3.1) 

in which li(a - (3) is the Dirac delta function. 

The following completeness and orthogonal relationships 
have also been established for the generalized Fourier 
transform1 : 

li(y - Yo) == "EZPNPI/IP(v,y)I/IP(v,yo) 

and 

v 

= L: ZPNf)I/If) (v, y)l/If) (v, yo)dvo 

+ L: Z PNt;I/It; (v, y)l/It; (v, yo)dvm 
N 

+ "EZPnl/l;,n(v,y)l/I;'n(v,yo) 
n=1 

(3.2a) 

where the superscript P equals V or H and the sub
scripts q and r are equal to 0, m, or s, and li q ,r is the 
Kronecker delta. The scalar functions are 

R~Mf)(v,y) 

exp(ivoY) + R~~ exp(- ivoY), 

for medium 0, 

x [exp(ivrY) + R~: exp(- ivry)], 

for medium r = 1,2,3, ... ,m, (3.3a) 

mq~: TPm+1-q exp(i mqt1r Vm-q.m+1-qhm-q,m+1-q) 
Tj!:!._q 

Rj!::'I/I~(v, y) 
x [exp(- iVrY) + R~: exp(ivry)], for medium r = 0,1,2, •.. ,m - 1, 

(3.3b) 

exp(- ivmy) + R~:;' exp(ivmy), for medium m, 
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and 
exp[- iV8(Y - hO• 1 )]' for medium 0, 

1 

1 
TDH P1 

for medium 1, 

(3.3c) 

X exp~~v~_1.qhq_1.q)[eXP(iV~Y) +R~; exp(-iv~y)], 

for medium r = 2,3, ... ,m, 

(3. 3d) 

The scalar functions for vertically and horizontally 
polarized waves 1/1 v (v, y) and 1/IH (v, y), (2.7) and (2.9), 
are given by (3.3) on replacing the letter P in all the ex
pressions by V and H, respectively. The reflection coeffi
cient at the i, i + 1 interface for waves incident from 
above is RPi and R~i is the reflection coefficient at the 
i - 1, i interface for waves incident from below (See 
Fig.1). Thus, for P = V or H, 

RPm = 0, 
(RR +1 . + RpDl! +1) 

RD - '.' , 
Pi - (1 +RP RDH)' i+1, i Pi+1 

i = 0,1, ... ,m -1, 

and 

Rilo = 0, 
U (Rr1 i + RJW-1) 

RPi = (1 +~P .RUl!)' 
i-1" P,-l (3.4a) 

i=1,2, ... ,m, 

where RY i ±l and RIf i ±1 are the two medium Fresnel re
flection coefficients for vertically and horizontally 
polarized waves respectively, 

RY+1,i = -RY,i+1 = (Vi Ei +1 - Vi +1 E j)/(Vi Ei+1 + Vi+1 Ei ), 

RIf+1,i = -RIf,i+1 = (Vi ll i +1 - vi +1Ili)/(Vj ll j +1 + vi +1Ili) 

and (3.4b) 

RP¥ = Rp j exp(- i2vj H j ), RP1 = Rp j exp(i2vj hj, i +1}' 

RY,If =RY,j exp(- i2viHj), RIS"7 =RIS"j exp(- i2vj hj _l,i)' 

The transmission coefficients are 

TPi = 1 +Rpp Tpj = 1 +RY,p 

Tp[I = 1 + R~If, T}![I = 1 + RY,If 

and the normalization coefficients are 

( R!?8/2nZ g , q = 0, 

NP =) RUh/2nZ P q =m q ) Pm m' , 

t 1,q=s. 

(3.4c) 

(3.4d) 

(3.4e) 

The generalized Fourier transform (3.2) consists of 
two infinite integrals (continuous part of the wave
number spectrum) which are associated with the radia
tion and the lateral wave terms and a finite set of sur
face wave terms (discrete part of the wavenumber spec· 
trum). The relationship between this transform and 
the familiar transform has been considered earlier. 1 

The infinite integrals in the v plane are shown to be 
associated with branch cut integrals Im(vo) = ° and 
Im(v m ) = ° in the complex u plane, while the surface 
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wave terms are associated with the reSidues of the 
poles at 1/RPo = ° (or 1/R'f,m = 0). The modal equation 
which determines the surface wave parameters v n is 
given by 

for P equals V or Hand i = 1,2,3, ... ,or m - 1. On 
the baSis of the discussion in Sec. 2, we formulate the 
following field transform pairs: 

ET(x,y,z) = ~ JeO [EV(x, v,w)ef + EH(x,.v,w)e¥] dw, 
v -eO 

where 

and 

(3.6a) 

P = V or H, 

(3.6b) 

HP(x,v,w) = JJeOHT(x,y,z).(lixX e'j:)dydz, P = VorH. -eO 
(3. 7b) 

The symbol ~ which denotes the summation (integration) 
over the entire v spectrum is to be interpreted as in 
(3.2a). The baSis functions for the vertically polarized 
waves are 

( 
iiziw iJ1/IV(V,y») eV = Zv li 1/IV (v y) - cp(w,z) 

T y' u2 + w2 oy (3. 8a) 

and 

(3. 8b) 

and the complementary basis functions for the vertically 
polarized waves are 

and 

(3.8d) 

in which 

cp(w,Z) = exp(- iwz) and cpC(w,z) = (l/2n) exp(iwz). 

For the horizontally polarized waves, the basis func
tions and the complementary baSis functions are res
pectively 

(3.9a) 
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olJ;H(V, y») 
o CP(w,z), 
y (3.9b) 

and 

(3.9c) 

_ ( "iiziw OlJ;H(V,y») hI; "" yHNH - aylJ;H(v,y) - CPC(w,z). 
u2 + w 2 oy (3.9d) 

To verify the field transforms (3.6) and (3.7), we sub
stitute (3. 6b) into (3. 6a) and (3. 7b) into (3.7a) and make 
use of the orthogonal relationships 

J Joo e~. (h~ x ax) 'dydz } 
-"" "" lip QA(V - v')Ii(w - w'), 

Ji: h¥. (ax x eJ;), dydz' (3.10) 

in whichP and Q are equal to V or Hand A(v - v') is 
defined in (3. 2b). The primes in some of the terms in 
(3.10) indicate that the variables in these terms are 
u' ,v' ,and w'. The orthogonal relationship (3.10) for 
P = Q = V or H is a direct consequence of (3.1) and 
(3.2b). For the case P = Hand Q = V the integrand in 
(3.10) vanishes since eIf and (ax x eft) are orthogonal to 
(k~ x ax) and kf, respectively. Therefore it remains to 
be shown that either one of the following related ortho
gonal relationships are satisfied: 

JJOO kif· (ax x e~)' dydz = O. 
-00 

(3. 11 a) 

Substituting, for ef and kb' (3.8a) and (3. 9d), respec
tively, in (3. 11 a) , we get 

+---

NH' 0 [ 
=-iwli(w-w')J

oO 

-, -;- lJ;V(V,y)lJ;H(V',y) 
-00 uu uy 

1 0 0 ~ 
+ k 2 oy lJ;V(v,y) oy lJ;H(v',y~dy 

iwli(w - w') m [ = ,NH'6 lJ;V(V,y)lJ;H(V',y) 
uu i~l 

1 0 1 0 ,~hi_l i + - -lJ;V(v,y)- _lJ;H(V,y) '. 
WE oy W/J. oy hi-i,i 

(3.11b) 

On applying the boundary conditions (2. 7b), (2. 7c), 
(2. 9b), and (2. 9c) for lJ; v and lJ;H and their derivatives in 
the above expressions, (3.11c) is shown to vanish. It 
should be noted that since lJ; v and lJ;H are piecewise 
continuous functions of y, their derivatives are not con
tinuous at the interface between two media. Thus, in all 
the above expressions for the basis functions and com
plementary basis functions, (3. 8) and (3.9), respectively, 
we perform differentiation with respect to y for each 
medium separately. Subsequently, all the integrations 
with respect to y must also be performed for each 
medium separately (3.11c). 
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For ideal dielectric loaded rectangular waveguides, the 
basis functions satisfy a biorthogonal relationship. 7 In 
this case, it can be shown that the complementary or 
reCiprocal basis functions (3. 8a), (3. 8b), (3. 9a), (3. 9b) 
are proportional to the basis functions (3. 8c), (3. 8d), 
(3. 9c), (3. 9d);hence, they are self-reciprocal. For half
spaces with nondissipative media, a biorthogonal rela
tionship exists between the basis functions and their 
complex conjugates. s In this case the reciprocal basis 
functions can be shown to be proportional to the complex 
conjugate of the basiS functions. However, for the 
general case no such simple relationship exists between 
the base and the reciprocal base. 9 The distinction be
tween the basis and the reciprocal basis is essentially 
that between covariant and contravariant vectors. 

4. TRANSFORMATION OF MAXWELL'S EQUATIONS 
INTO FIRST ORDER ORDINARY DIFFERENTIAL 
EQUATIONS FOR THE WAVE AMPLITUDES 

As indicated in the introduction (Sec. 1), rather than 
resolve Maxwell's equations by solving the wave equa
tions for the normal components of the electric and 
magnetic fields E y and Hy , (2.3a) and (2.3b) respec
tively, we proceed by transforming Maxwell's equation 
into first order ordinary differential equations for the 
wave amplitudes of the transverse electric and magnetic 
fields (2.10). The reason for following the latter pro
cedure is that it can be carried out whether or not the 
thickness and the electromagnetic parameters of each 
layer of the structure are uniform.1 0 We shall assume 
here that the layers of the stratified structure are 
uniform (Fig. 1). 

Eliminating the normal components of the electric and 
magnetic fields from Maxwell's curl equations, we get 
the following set of differential equations for the trans
verse electric and magnetic fields ET an~HT in terms of 
the electric and magnetic sources J and M, respectively: 

in which the operator VT is given by 

VT=aYo~+"ii20~' (4.1c) 

Scalar multiply (4. la) by (k~ x ax), and integrate with 
respect to y and z over the entire y-z plane. Using the 
properties of the field transform pair for the transverse 
electric field, (3. 6a) and (3. 6b), it follows that 

d 00 _ _ _, dEY' 
--Jf ET·(h~ xa)dydz=---. (4.2) 

dx -00 dx 

To integrate the next two terms in (4. la), we employ 
Green's theorem in two dimensions and note that 

[1 + (1/~2)VTVTJ.(k~ x ax)' == L(ii~ x ax>' = (u'/w/J.)e~'. 
(4.3a) 
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Thus, 

(4.3b) 

in which we have employed the properties of the field 
transform pair for the transverse magnetic field (3. 6c) 
and (3. 6d) and the operator L is defined in (4. 3a). Also, 
from Maxwell's curl equations, we have 

(4.4a) 

In addition, 

and HT x ax·a z = HT .a y • 

(4.4b) 

We now note that E",Hy' (1/E)illt-' V/ily, and Ii~ .ay are con
tinuous at each interface. Thus, on applying Green's 
theorem in two dimensions, the line integral in (4. 3b) can 
be written as 

~ J~[J:-J (Ii x a ~ hi-l.i .a dz 
;=1 - cO ZWE x x x h-. . y 

,-1, , 

Hence, (4. 1a) reduces to 

dEY 
--- -iuHv 

dx 

==jV(x). 

(4.4c) 

(4.5a) 

We now multiply (4. 1b) by (ax x e~)' and integrate with 
respect to y and z over the entire y-z plane. Following 
the procedure applied to (4. 1a), we get 

dHV 
---- iuEv 

dx 

= JJcO J;,. e~dydz - JJcO ~ M" VT • (ax x e{:)dydz 
-~ -cO lWj.J. 

== gV(x). (4.5b) 

E_quations (4. 1a) and (4.1b) are now scalar multiplied by 
(hI; x ax), and (ax x e};)',respectively,and integrated 
with respect to y and z over the y-z plane. Thus, it can 
be shown that 

dEH 
-(IX -iuHH 

= JooMT·hkdydz - JJcO J:-JxVT.(hI; x ax)dydz -eO -~lWE 

(4.6a) 

and 
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dRH 
--- -iuEH 

dx 

= JeO Jz(eI;.az)dydz - JJcO ~MXVT.(i'ix x eI;)dydz -cO -cOzwj.J. , 
(4.6b) 

The electric and magnetic field transforms for the ver
tically and horizontally polarized waves are expressed in 
terms of forward and backward wave amplitudes. Thus, 
we set 

HP = aP + bP and EP = aP - bP, P = V or H. 
(4.7) 

Furthermore, we define the following functions of x that 
involve the sources ;r and M, as 

AP == - (fP + gP)/2 and BP == - (fP- gP)/2, 

P =: V or H, (4. 8) 

where jV,gV,jH, and gH are defined in (4.5) and (4.6). 
Expressing (4.5) and (4.6) in terms of the forward and 
backward wave amplitudes aP and bP (P equals V or H) 
respectively, (4. 7), we get the following sets of un
coupled first order ordinary differential equations for 
the wave amplitudes; 

daP 
dx + iuaP =AP and db

P 
_ iubP = - BP (4.9a) 

dx ' 

in which P is equal to V or H. The solution to (4. 9a) 
subject to the boundary conditions (radiation condition), 

aP(x = - 00) = 0, bP(x = 00) = 0 (4.9b) 

can be readily shown to be 

aP = exp(- iux)f' exp(iux')AP(x')dx' 
-~ 

(4. lOa) 

and 

bP = exp(iux)J~ exp(- iux')BP(x')dx'. 
x 

(4. lOb) 

Thus, employing the field transform pairs formulated 
in Sec. 3, we have derived rigorous expressions for the 
vertically and horizontally polarized waves excited by a 
general distribution of electric and magnetic sources in 
any of the uniform layers of a stratified structure. In 
the next section, it is shown that these expressions are 
particularly suitable for integration by the steepest 
descent method. 

5. THE FIELDS FOR VERTICAL AND HORIZONTAL 
ELECTRIC DIPOLES 
We shall use the analysis of Sec. 4 to write the expres
sion for the electromagnetic fields for vertical and hori
zontal electric dipoles. Fields due to vertically and 
horizontally oriented uniform, infinitesimal current 
loops may be obtained in a similar manner by consider
ing the dual problem of excitation by equivalent vertical 
and horizontal magnetic dipoles. For a vertical electric 
dipole located at r = r 0' we write 

J(x,y,z) = l1y oir -ro)ay =l1y o(x - xo)l.i(y - yo)l.i(z - zo)a y , 

(5.1a) 
in which I.i{r - r 0) is the three-dimensional Dirac delta 
function and 9y is the electric current moment measured 
in amp meters. Thus, 

and 
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AV = - BV = - 9y(e~ .ay)li(x - x o)/2 

= - 9'y[Z VN v ltt V(v, y)q,C(w, Z)]oli(x - x o)/2. (5.1b) 

Obviously, no horizontally polarized waves are excited. 
The transverse magnetic and electric fields in any of 
the m + 1 media are 

and 

The axial components of the magnetic and electric 
fields are 

9'y "'" JoO. . H" = - LJ exp[- zu Ix - Xo 1- zw(z - ZO)l 
41T v - 00 1 

and 

in which 

sgn(x - xo)= ~ 1 
1-1 

for x > Xo 

for x < xo' 

At the plane x = Xo it can be shown from (5. 2) that 

(5.2e) 

(5.3a) 

where JTS is the transverse surface current per unit 
area at x = xO' Similarly, 

ax·]'I,,~ = - 9'yli' (z - zo)li(y - yo)/2iwEO 

(5.3b) 

in which psis the surface charge per unit area. The 
tangential electric field and axial magnetic field are 
continuous at x = xO' For x > Xo = 0, y and Yo > ho 1 = 0, 
and z = Zo = 0, the z component of the magnetic rad'ia
tion field can be written as 

~ 100100
• • Hz = - 81T 2 -00 -00 [exp(zvoYo) + R~o exp(-zvoYo)] 

x exp(- ivoY - iux)dvodw. (5.4a) 

By making the substitutions 

x =r sine, y = r cose, Yo = d 
and 

u = ko Sine' coscp', Vo = ko cose', w = ko Sine' sincp' 
(5.4b) 

and using the steepest descent method, it can readily be 
shown that the azimuthal magnetic field is 

ik 0 9y sine exp(- ikor) 
H", = [exp(ikod cose) 

4nr 
+ R~o exp(- ikod cose)]. (5.4c) 
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The lateral wave contribution to the magnetic field [the 
infinite integral with respect to vm ' (3. 2a)] can be eva
luated in a similar manner using the steepest descent 
method. The contributions from the surface waves can 
be obtained directly from (2.5). Any of the other com
ponents of the electromagnetic field can be evaluated in 
a Similar manner. 

For a horizontal electric dipole, we write as in (5.1a) 

(5.5a) 

In this case, both vertically and horizontally polarized 
waves are excited: 

AV = BV = 9',,[VT' (ii~ x i'i,,)/2iwE]O 

= 9" ~V o~v cp0iWEt (5.5b) 

and 

AH = BH = 9'AvT · (iiI; x a,,)/2iwE]o = 9',,[(w/u)NH lttHcpc]O' 

(5.5c) 
The transverse magnetic and electric vertically pola
rized fields are 

- 9'" "'" J 00 H't = a z - LJ exp[- iu Ix - Xo 1- iw(z - ZO)l 41T v - 00 'J 

(5.6a) 

and 

- 9'" JoO E't = sgn(x - x o) - L) exp[- iu I x - Xo I 
41T v - 00 

_ iw(z - zo)] [.NV olttV] 
ZWE oy 0 

~ "iiziw oltt V(V,y») 
x Z aylttV(v,y) - dw. 

u2 + w 2 oy 
(5.6b) 

The corresponding axial magnetic and electric fields 
are 

9" JoO Hy = sgn(xo - x) - L: exp[- iu Ix - Xo 1- iw(z - zo)] 
41T v -00 

and 

[ 
NV olttV] w 

x -, - -- -lttV(v,y)dw 
ZWE oy 0 U 

9 Er= 2.L:JoO exp[-iulx-xol-iw(z-zo)] 
41T v -00 

[ 
N v oltt V] 1 0 

x -. - -- -. - -ltt V(v,y)dw. 
ZWE oy 0 ZWE oy 

The transverse magnetic and electric horizontally 
polarized fields are 

(5.6c) 

(5.6d) 

- 9'" "'" JoO [W ~ HiJ. = - LJ exp[-iulx-xol-iw(z -zo)] - NHlttH 
41T v -00 U 0 

XYH(-a lttH(x,y) +"ii z iw ~lttH(v,Y»)dW 
y u 2 + w 2 oy (5.7a) 

- - 9'x JoO EIf = a z sgn(x - x o) - L) exp[- iu Ix - Xo 1- iw(z - zo)] 
41T v -00 

x[: NHlItjo lItH(v,y)dw. (5.7b) 
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The corresponding axial magnetic and electric fields are 

I1x JoO HH = sgn(xo - x) -"E exp[- iu Ix - Xo 1- iw(z - zo)] 
x 41f v - 00 

[
w ~ 1 0 

X -NH1/IH -. - -1/IH(v,y)dw 
u 0 ZWfJ. oy 

(5.7c) 

and 

~ ~JO() E~ = - - L.J exp[- iu Ix - Xo 1- iw(z - z 0)] 
471 v - 00 

xl.w NH1/IH1 w 1/IH (v,y)dw. 
Lu Jo u 

(5.7d) 

For the case of the horizontal electric dipole, the tan
gential magnetic field and the normal electric and mag
netic fields are continuous; however, the tangential 
electric field is discontinuous. It can be shown from 
~. 6bLand (5. 7b) that the total tangential electric field 
Ef + EIJ. at x = Xo is 

ETlxil =-dAo'(y-yo)o(z -zo)a y 

+ o(y - YoW (z - z o)a z]/2iwE 

(5.8a) 

Also from (5.6c) and (5. 7c) it can be shown that 

(5.8b) 

Equations (5.8) and the continuity of the tangential mag
netic field and normal electric field at x = Xo are con
sistent with the boundary conditions for double layered 
sources. 11 

6. CONCLUDING REMARKS 

We have formulated in this paper a set of transform 
pairs for the transverse electric and magnetic fields in 
multilayered structures. These transforms provide a 
suitable basis for the full wave expansion of the electro
magnetic fields into vertically and horizontally polarized 
waves. Each set of transforms consists of two infinite 
integrals (continuous part of the wave spectrum) which 
correspond to the radiation and lateral wave terms as 
well as a finite number of terms (discrete part of the 
wave spectrum) which correspond to the surface waves. 

These transforms have been applied to the problem of 
electromagnetic wave propagation in multilayered struc
tures excited by an arbitrary distribution of electric and 
magnetic sources in any of the uniform layers of the 
stratified medium. They enable the conversion of Max
well's equations into a complete set of first order un
coupled ordinary differential equations for the verti
cally and horizontally polarized wave amplitudes (4.9) 
which are readily solved (4.10). 

The special cases of radiation by vertical and horizon
tal electric dipoles are considered in some detail in 
Sec. 5. It is shown that the solutions satisfy the proper 
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boundary conditions as an interface with Single or double 
layered source distributions. It was also demonstrated 
that the expressions for the continuous part of the wave 
spectrum are conducive to integration by the steepest 
descent method. 

In the companion paper10 it is shown that the generalized 
field transforms also form a suitable basis for the ex
pansion of the transverse electric and magnetic fields 
excited by an arbitrary distribution of electriC and mag
netic sources in nonuniform multilayered structures; In 
this case however, since the basis functions are also 
functions of the variable x, the resulting first order or
dinary differential equations for the vertically and hori
zontally polarized wave amplitudes are coupled. This 
accounts not only for the forward and backward scatter
ing of the primary fields in the nonspecular direction 
(with respect to the x-z plane) but also wave coupling 
between the vertically and horizontally polarized waves. 

The generalized field transform pairs can also be 
applied to problems in which one or both of the bounding 
media of the multilayered structure are regarded as 
perfect electric or magnetic walls or if they are charac
terized by surface impedances. Thus, for instance, if the 
structure is a multilayered waveguide with perfectly 
conducting wallS, the continuous part of the wave spec
trum vanishes and the fields are given in terms of an in
finite set of waveguide modes (discrete part of the wave 
spectrum).l On the other hand, one can derive the fields 
due to arbitrary electric and magnetic source distribu
tions in free space by setting R~o ~ 0 in the first in
finite integral in (3. 2a) and disregarding the second in
finite integral (lateral wave) and the surface wave terms. 
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Depolarization of electromagnetic waves excited by 
distributions of electric and magnetic sources in 
inhomogeneous multilayered structures of arbitrarily 
varying thickness. Full wave solutions 
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Full wave solutions to the problem of depolarization of electromagnetic waves excited by general 
three-dimensional distributions of electric and magnetic sources in inhomogeneous multilayered 
structures of arbitrarily varying thickness are derived. Generalized field transforms that provide an 
appropriate basis for the expansion of transverse electromagnetic fields are employed to convert 
Maxwell's equations into a set of coupled first order ordinary differential equations for the forward 
and backward, vertically and horizontally polarized wave amplitudes. The continuous parts of the 
complete wave spectrum correspond to the radiation and lateral wave terms while the discrete part of 
the wave spectrum corresponds to the surface wave or trapped waveguide modes. Exact boundary 
conditions are imposed at all the interfaces of the structure and the solution is not restricted by the 
surface impedance concept. When the bounding media of the structure are characterized by perfect 
electric or magnetic walls, the fields are expressed exclusively in terms of waveguide modes. On the 
other hand, if the electromagnetic parameters are functions of one coordinate variable, the solutions 
are expressed exclusively in terms of an infinite integral- the radiation term. The solutions are shown 
to satisfy the reciprocity relationships. 

1. INTRODUCTION 
Full wave solutions to the problem of depolarization 

of electromagnetic waves excited by general three
dimensional distributions of electric and magnetic 
sources, in inhomogeneous, multilayered structures of 
arbitrarily varying thickness are derived (see Fig. 1). 

r 

o 
£0 (Xl fLO<X) 

E,(XI fL,(XI 

For the purpose of the analysis, generalized field 
transforms are employed to provide a suitable complete 
expansion for the vertically and horizontally polarized 
transverse electric and magnetic fields.! The complete 
expansion into vertically and horizontally polarized 
waves, consist of two infinite integrals (continuous wave 
spectrum) which constitute the radiation and the lateral 
waves as well as a finite set of terms (discrete wave 
spectrum) that constitute the surface waves. The genera
lized field transforms are used to convert Maxwell's 
equations into a set of coupled first order ordinary dif
ferential equations for the forward and backward, verti
cally and horizontally polarized wave amplitudes. 

hl,2 ,....Tt---~.:-?--:3=---4--T--- hl,2' h2j3 

In our analysis, exact boundary conditions are imposed 
at all the interfaces of the structure; thus, the solutions 
are not restricted by the approximate surface impedance 
concept. It is shown that these solutions satisfy the re
ciprocity relationships iIi electromagnetic theory. 

hr,r+r ---
",-

hm-2,m-1 m-I 
Em_I(XI fLm-/XI Hm-I 

hm-I,m--+--.-..:~~~~-----:t::"_hm-I,m 
m £m(XI fLnlXI 

A very broad group of problems may be solved using the 
analysis derived in this paper. These include depolariza
tion of electromagnetic waves due to variations in the 
height as well as due to variations in the electromagnetic 
parameters of the earth's surface as for the case of 
electromagnetic waves obliquely incident on a coast line. 
The analysis is also applicable to problems of electro
magnetic radiation by sources embedded in the nonuni
form layers of the earth's crust (hardened communica
tion systems) and to problems of wave scattering at the 
earth's surface by objects of finite cross section buried 
in the earth's crust (remote sensing, see Fig.2). Non
uniform artificial surface wave structures, nonuniform 
layered waveguides, and electromagnetic radiation in 

FIG.1. General source distribution In nonuniform multilayered structures. 

one dimensionally inhomogeneous media are other im
portant special cases that can be considered likewise. 
Thus, for instance, when the bounding media of the non
uniform structure are regarded as perfect electric or 
magnetic walls or characterized by surface impedances, 
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FIG. 2. Nonuniform stratified media with a layer of finite cross section. 
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the electromagnetic fields are expressed exclusively in 
terms of infinite sets of waveguide modes. However, if 
the electromagnetic parameters are functions of only 
one coordinate variable, the fields are given exclusively 
in terms of a single infinite integral-the radiation term. 

A right-hand Cartesian coordinate system is used 
since for the general problem considered there is no 
axis of symmetry for the fields. The height of the inter
faces of the layered structure as well as the electro
magnetic parameters are assumed to be arbitrary func
tions of the variable x (see Figs. 1 and 2). 

2. FORMULATION OF THE PROBLEM 
The excitation of electromagnetic waves by general 
three-dimensional distributions of sources in nonuni
form multilayered structures is considered (see Fig. 1). 
For convenience it is assumed that both electric and 
magnetic sources,J and P and M and Pm respectively, 
are present in any of the (m + 1) media of the structure. 
A suppressed exp(iwt) time dependence is assumed in 
this work. 

The ith medium of the structure is characterized by 
the electromagnetic parameters € j(x) and IJ.j(x) which in 
general may be complex to account for dissipation of 
electromagnetic power in the medium. Thus if € j r and (J j 

are the dielectric coefficient and conductivity respec
tively of the ith medium, 

(2. 1a) 

The interface between medium i and i + 1 is given by 
the surface y = h j • j +1 and the thickness of the ith layer is 

Hj(x) = h i -1• j(x) - hi. i+1 (x), i = 1,2, ... ,m - 1. (2. 1b) 

Maxwell's equations for the transverse electric and 
magnetic fields, E T and R T respectively, are 

aE
T 

_ 

-- = iWIJ.(HT x 
ax 

and 

aRT _ 1 _ 
- - = iw€(ax x E T) - -. - Y'TY'T' (ax x E T) 

ax zWIJ. 
_ _ 1 

(2.2a) 

+ ax JT + -.- Y'TMx' (2.2b) 
zWIJ. 

in which the operator Y'T is given by 

v=a1....+a1.... 
T Y ay z oz 

and the transverse vectors are 

AT = ayAy + azA z · 

(2.2c) 

(2.2d) 

The following field transform pairs provide the basis 
for the complete expansion of the transverse electric 
and magnetic fields into vertically and horizontally po
larized waves: 

ET(x,y,z) = L: .[: [EV(x,v,w)el+ EH(x,v,w)e¥]dw, 

v (2.3a) 
where 

P foo-E (x, v,w) = ET(x,y,z). (fif,. a )dydz, 
-00 x P = V or H, 

(2.3b) 

HT(x,y,z) = L: Joo [HV(x, v,w)1i~ + HH(X, v,w)fi¥]dU' , 
v -00 (2.4a) 
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where 

P ) J 00 - ( ) - -T) H (x, v,w = HT x,y,z • (ax x ep dydz, 
-00 

P = V or H. (2.4b) 

The letters V and H are used as subscripts or super
scripts to denote vertical or horizontal polarization res
pectively. The explicit expressions for the basis func
tions ef and hf and the complementary basis functions 
eJ and fif, (P equals V or H) for stratified media with an 
arbitrary number of layers (m + 1), have been derived 
earlier. 1 The symbol L:v in (2.3a) and (2.4a) denote the 
summation (integration) over the entire v spectrum. It 
consists of two infinite integrals (continuous part of the 
wave spectrum) which originate from branch cut inte
grals 1m (vo) = 0 and 1m (vm ) = 0 and a set of terms 
(discrete part of the wave spectrum) which are the resi
due contributions at the poles of the reflection coeffici
ents R 1) (P = V or H) looking into the layered structure 

PO 
from above (see Fig. 1). The modal equation for the 
discrete part of the spectrum, (the surface or trapped 
waveguide modes) iS2 

1- Rff; exp(- i2vjHi) = 0, i = 1,2, ... , or m - 1, 
(2.5a) 

in which R ~i and R~j are the reflection coefficients in 
medium i lOOking upwards and downwards, respectively 
(see Fig. 1) and 

(2.5b) 

where k i = W(lJ.i€j)1/2 is the wavenumber for medium i. 
Since the electromagnetic parameters and the heights of 
the interfaces of the layered structure are assumed to 
be functions of x, in this paper the basis functions and the 
complementary basis functions are functions of the 
transverse variables y and z as well as the axial co
ordinate variable x. Nevertheless, the orthogonality re
lationships derived for uniform layered structures can 
be used in the problem presently under consideration. 
It can be readily shown 1 that, for any surface x = const, 

i 00 e f . (fi~ x a x) 'dydz t 
00 ( = opQ 6(v _ v')o(w - w'), 

Joo h~ . (ax x ef,) 'dydz, 
-00 , 

(2.6a) 

in which P and Q are equal to V or H and for the primed 
terms the variables are understood to be u', v' and w ': 

, !O(V- v'), v' '" vs ' 
6(V-V)=Oq,.. , 

0v v' V = vs ' . s 

(2.6b) 

where q and r are equal to 0, m, or s (corresponding to 
the radiation, lateral wave and surface wave constituents of 
the wave spectrum2 and 0(0' - (3) and oa tl are the Dirac 
delta function and the Kronecker delta. . 

In the following section, we employ the transf~m pairs 
i9r the transverse electric and magnetic fields, E T and 
HT [(2.3) andi.? 4)], ~spectively, to convert Maxwell's 
equations for ET and HT [(2.2)] into a set of coupled first 
order ordinary differential equations for the forward and 
backward, vertically and horizontally polarized wave 
amplitudes aPex, v, u') and bP(x, v, w). The wave ampli
tudes are related as follows to the scalar transforms 
EP and HP, (2.3) and (2.4): 

HP=aP+b P and EP=aP-b P , P=VorH. 
(2.7) 
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3. COUPLED EQUATIONS FOR THE VERTICALLY AND 
HORIZONTALLY POLARIZED WAVE AMPLITUDES 

Beginning with (2. 2a), we substitute (2. 3a) and (2. 4a) 
.!9r the transverse electric and magnetic fields Ex and 
H..x respectively, and scalar multiply the equation by 
(h'C x ax)', and integrate with respect to y and z over the 
entire y-z plane. We note that the transverse fields and 
the basis functions are in general piecewise continuous 
functions; thus, the integration must be performed in 
each medium of the structure separately. Furthermore, 
since the layered structure varies along the x axis, the 
field expansions (2. 3a) and (2. 4a) do not converge uni
formally at all points of the y-z plane; hence, in general 
it is not permissible to interchange orders of integration 
and differentiation. Thus, we have 

1 00 oE T - d 100 -
- - • (h'C x a ) 'dydz = - -00 E T ' (h~ x ax>'dydz 

-00 ax x dx 

+ 1: ET · ~ (!i'C x a,) 'dydz 
ax 

_ f Joo dh i - 1 ,i [ET·(ii~x ax>']h t-1"dz (3.1) 
i=1 -00 dxhi-1, i 

and, using Green's theorem in two dimensions, we get 

(3.2) 

and 

Joo ~ V V • (liT x ax>. (ii'C x ax),dydz 
_00 WE T T 

(3.3) 

From Maxwell's equations and the boundary conditions 
at the interfaces, we have 

(3.4a) 

[ 
dhi-1,i J ht-1.i 

E ----E 
x - dx Y hi-I,;' 

i = 1,2, ... , m (3.4b) 

and 

It can also be shown that 

ht 1 . 

i = 1,2, ..• ,m 
(3.4c) 

[(l/wE)VT ' (ii'C x ax)] '-"=0, i=1,2, ..• ,m 
hi-l,i (3.5a) 

[1 + (1/k2)vTVT]' (!i'C x ax) = (u/wp.re~, (3.5b) 

and 

(3.5c) 
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Thus, on employing (3.2) through (3.5) and the proper
ties of the field transforms (2.3b) and (2. 4b), (3. 1) re
duces to 

- ~ EV,(x v' w ') - iu 'H vex v' w') 
dx " , , 

+ L:; Joo (EVC~ + EHC~)dw = fY(x), (3.6a) 
v _00 

in which 

" J""-p a (-T -)'ddz C;(v ,w ,v,w) = eT • - hv x ax y , 
-00 ax 

P = Vor H, (3.6b) 

and 

fV(x) = J"" [M)i'C'. a z - (l/iw€) JxVT • (ii~ x ax)]dydz. 
-00 (3.6c) 

We now scalar multiply (2.2b) by (ax x en' and inte
grate with respect to y and z over the entire y-z plane. 
Following the procedure applied to (3.1) and noting that 

and 

[ 
dh. l' ] ht 1 . 

H=-~H '-,' 
x dx Y hi-I,;' 

i = 1,2, ... ,m 

[
- - - ]htl' a x E . a = - E '-,' = 0 

x T Y z h- ' 
i-l,i 

liT' (ax x en = - Hy(e~. az) + Hz(e~ • ay )' 

we can show that (2. 2b) reduces to 

- ~ HV(x, v',w ') - iu'EV(x, v',w') 
dx 

in which 
a 

Df(v',w',v,w) = 100

00 
hf'- (ax x e'C)'dydz ax 

00 m dh '-1 . h+ -1 L:; -'-" [(iip.a )(eT.a)'] i-I,; dz, 
00 '-1 d T Z V y h-

t- X i-l,i 

(3.7a) 

(3.7b) 

(3.7c) 

(3.8a) 

(3.8b) 

(3.8c) 

P = V or H, (3.9b) 

and 

g Vex) = i: J T • e'C 'dydz - i: ~ Mx VT • (a", x e~')'dyd~. 
zwp. (3.9c) 

On scalar multiplying (2. 2a) and (2. 2b) by (iiI x ax)' and 
(a x eI;)' respectively, and integrating with respect to 
y ~nd z over the entire y-z plane, we obtain in a similar 
manner 

d H " ) . 'HH( , , ) -- E (x,v ,w - zu x,v,w 
dx 

(3. lOa) 

and 
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- ~ HH(X, v',w ') - iu 'EH(X, v',w ') 
dx 

+ L) Joo (HvDK + HHDifI)dw = gH(x), (3. lOb) 
v -00 

in which 

L
OO

- a T -)' CJ;(v',w " v,w) == -00 ef . ax (hH x ax dydz 

m dh i - 1 • i - _ - _ ,ht . 

Loo L) --- (et • az)(h'fr • a) .-1.' de (3. 11 a) 
+ . 1 dx Y h-

-00 1- i-l,i 

p ., = Joo DH(v ,w , v,w) -
-00 

ht . :x (ax x eo) 'dydz (3.11b) 

for P = V or H and 

and 

gH(X) == Joo Jz (eJ;· az)dydz 
-00 

JOO 1 - -T) 
- -00 -.- MxVT·(a x x e H dydz. (3. 11d) 

ZWE 

Expressing the scalar transforms EP and H P (P = V or 
H) in terms of the wave amplitudes (2.7), we obtain the 
coupled first order ordinary differential equations for 
the vertically and horizontally polarized wave ampli
tudes. Thus, 

Q = VandH, (3. 12a) 

and 

- db
P 

+ iub P ==L: L) J(stl aQ + SftZbQ)dw'+ BP, 
dx Q v' 

Q = VandH, 

in which P = V or H and we have interchanged the 
primed with the unprimed variables: 

P = VorH 

(3. 12b) 

(3.13) 

The transmission scattering coefficients are defined as 

Sfl~(V,W; v ',w') = - [Cj(v,w; v',w') + D~(v,w; v',w')]/2 

CI' '" (3, (3. 14a) 

in which CI' and (3 are A or Band P and Q are V or H. 
The reflection scattering coefficients are 

Sfl~(v,w; v ',w ') = [Cj(v,w; v',w ') - Dj(v,w; v',w ')y2 

for CI' = A or B and P and Q = V or H. 

4. THE COUPLING COEFFICIENTS AND 
RECIPROCITY RELATIONSHIPS 

(3. 14b) 

In this section we obtain explicit expressions for the 
transmission and reflection scattering coefficients 
(3. 14a) and (3. 14b) respectively. Thus it is necessary to 
evaluate the integrals in (3. 6b), (3. 9b), (3. 11 a) , and 
(3.11b) for CS and DS. To this end, we find it very use-
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ful to demonstrate first that our solutions for the for
ward and backward vertically and horizontally polarized 
wave amplitudes satisfy the reciprocity relationships. 
In view of the normalization used in our analysis, it can 
be shown that the reciprocity conditions to be satisfied 
are2 .3 

sJ~(v,w; v',w ') = - S~(v ',w '; v,w)NP(v,w)/NQ(v',w '), 
(4. 1a) 

Sj\~ (v,w; v',w ') = S~j\ (v ',w ';w)NP(v,w)/NQ(v',w ') 
(4.1b) 

for P and Q equal to V or H and a equal to A or B. The 
normalization coefficients for the vertically and hori
zontally polarized waves are defined in Ref. 1. Since 
the orthogonality relationships (2. 6) are satisfied for 
all y-z planes, it follows that 

~ JeP' (hT x li )'dydz = 0 = 100 eP ' ~ (hT xli) 'dydz dx T Q x -00 T ax Q x 

1
00 - a 

+ hT • - (li x eP)dydz 
-00 Q ax x T 

m (dh. 1 . )ht 1 . -~ i: ~ ef '(h~ x ax)' ~- "dy 
,=1 dx hi-l, i 

= C~(v'w';v,w)+ 
Dj(v,w; v',w ')NQ(v',w ') 

(4.2) 

for P and Q = V or H. Using the above relationship be
tween the coupling coefficients C ~ and Dj, we can show 
readily that the transmission and reflection scattering 
coefficients (3.14) satisfy the reciprocity relationships 
(4.1). Furthermore, in view of (4.2) it is not necessary 
to evaluate both C~ and Dj. 

Using the orthogonal properties of the scalar functions 
1/1 P( v, y) and cp(w, z) used in the definition of the basis 
functions e¥ and hf, 1 we can show that for v '" v' 

CVV(v'w';v,w) = O(w-w') L) ~,y m tZ V( )NV' 
i=1 V 2 - v2 

== O(w - w ')C VV(v " v,w). (4.3a) 

For the surface wave terms v = v' = v n , we get 

== o(w-w')CVV(v',v,w), (4.3b) 

in which 

az v = Z v(u2 
- w 2 1. du _1. dE) 

ax u2 + w 2 U dx E dx 
(4.3c) 

and du/ dx is determined by the modal equation (2.5). To 
obtain the explicit expression for DHH, apply the follow
ing duality transformations to the expression for C vv 
(4.3): 

1/1 v -? ..pH, Z V -? yH, N v -? NH and E -? IJ. (4. 3d) 
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The coefficient CI(,. = 0 since efj is orthogonal to (ii~ x 
a ... ). Integrating the expression for C I, (3.l1a), we can 
show that 

, , , m [iWNH'~ , 
CI(v,w ;v,w)= Ii(w-w )1:1 uu,/l/.,v(OI/iH/oX) 

+ ~ ol/l v (02I/1
H

), + dhi-1,i (U
2 + W

2)' 01/1 V l/I
H

' 

k2 oy oxoy dx k2 oy 

1 du' 1 
-;; dx 1/1 VI/IH' + k2(V2 _ v'2) 

( 
1 d~ v2 d~') 

X (u2 + w 2 ) - - - ---;- -
~dx ~ dx 

== Ii(w - w')CI(v', v,w). (4.3e) 

In the expressions derived for the coupling coefficients, 
(4.3), it is understood that, for P = V or H, 

ol/iP (m dh i -1 i 0 m d~i 0 dE; 0 ) 
-= L: --' -- + I; --+-- I/Ip. 

oX i~l dx oh i - 1•i i~ dx o~; dx OE; 

(4.4) 
In view of (4.3), (3. 3) can be simplified by integrating 
with respect to w '; thus, 

- (!! + iU) aP(x, v,w) = 6 I; [Sil~(v, v' w)aQ(x, v',w) 
dx Q v' 

+ SilZ(v, v',w)bQ(x, v',w)] - AP(x, v,w) (4.5a) 

and 

- (!! - iu\ bP(x, v, w) = L: L: [Sfo~(v, v', w )aQ(x, v', w) 
dx J Q v' 

+ SfoQ(v,v',w)bQ(x,v',w)] + BP(x,v,w), (4.5b) 

in which P, Q = V or H, the symbol I;v' is defined as in 
(2.3) and (2.4), and 

S~~(v,v',w) =- [C~(v,v',w) + D~(v,v',w)]/2, 

a '" {3, Q, (3 = A or B, (4.5c) 

and 
S}J~(v, v' w) = [Cj(v, v ',w) - Dj (v, v', w)]/2, 

a = A or B. (4.5d) 

The above Simplifications result from our assumption 
that oh i_1 Joz = O. For the special case when the 
source distributions are independent of z (uniform infi
nite line sources), the source coefficients AP and BP 
[(3.13)] are proportional to Ii(w). As a result, the para
meter w can be eliminated from all the field expres
sions (the waves are propagating normal to the z axis, 
w = 0) and the fields are independent of z. In this case, 
all the cross polarization terms, which are proportional 
to w, (4. 3e), vanish. This special case has been con
sidered earlier in detail.4 However, for the finite 
source distributions considered in this paper, none of 
the scattering coefficients (4.5) vanish. For instance, 
for the radiation field, S~Ii(v, v', w) corresponds to the 
coupling between an incident forward propagating hori-
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zontally polarized wave propagating in the direction 
(u', v', w)/k and a forward scattered vertically polarized 
wave propagating in the direction (u, v,w)/k. Similarly, 
SJJ~(v, v',w) corresponds to the coupling between an in
cident backward propagating vertically polarized wave 
propagating in the direction (u', v', w)/k and a forward 
scattered horizontally polarized wave in the direction 
(u, v,w)/k. Since the complete full wave expansion of the 
fields (2.3) and (2.4) consist of radiation, lateral wave, 
and surface wave terms, this analysis also accounts for 
the coupling between these constituents of the full wave 
expansions. 

5. ITERATIVE SOLUTIONS 
The coupled first order ordinary differential equations 

for the vertically and horizontally polarized wave am
plitudes [(4.5)] are similar in form to those derived for 
source free waveguides with nonuniform cross sec
tions. 5 •6 In the present analysis, however, the wave 
spectrum is not only discrete (surface waves or trapped 
waveguide modes) but also continuous (the radiation and 
lateral wave terms). In addition, the excitation from 
local sources is accounted for directly in the coupled 
differential equations through the terms A P and BP 
[(3.13)]. The scattering coefficients S}J~, (4. 5), are in 
general arbitrary functions of the independent variable 
x. Thus, these sets of differential equations are often 
solved using sophisticated numerical methods. In this 
section, however, we consider iterative solutions that are 
suited to physical interpretation. 

To obtain the first order iterative solutions, we ignore 
the wave coupling in (4.5) and solve the resulting un
coupled equations subject to the boundary condition 

aP(x -)- 00) = 0 and bP(x -) 00) = O. (5. 1a) 

Thus, it fOllows that 

aP(x,v,w) = J'" exp(- i J'" udx")AP(x',v,w)dx' (5.1b) 
-00 x' 

and 

bP(x,v,w) = Joo exp(iJ'" udx")BP(x',v,w)dx', ... .... 
P = V or H. (5.1c) 

In the above expressions the parameter u may in 
general be a function of x. The first order iterative so
lutions (5.1) correspond to the primary (unscattered) 
fields which can be determined using (2.3a) and (2. 4a). 
When the sources are far from the observation point, 
the radiation and lateral wave terms may be integrated 
readily using the steepest descent method. 1 These first 
order iterative solutions are now substituted on the 
right-hand side of (4.5) and the source terms set equal 
to zero. The resulting differential equations are inte
grated to give the following second order iterative solu
tions for the scattered wave amplitudes4: 

aP(x, v,w) = - J'" exp(- i J'" udx ") 
-00 x' 

x (.L: I; Sil$(v, v',w)aQ(x', v',w) 
Q v' 

and 

+ SilZ (v, v'w)bQ(x'v',w )dX' (5.2a) 

JOO J'" .. bP(x,v,w) = exp(i udx) ... .... 
x (L: I; Sfo~(v, v ',w)aQ(x', v',w) 

Q v' 

(5.2b) 
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This iterative procedure has been carried out to com
pute the vertically polarized fields excited by infinite 
line sources over nonuniform stratified earth. 7 

6. CONCLUDING REMARKS 

Through the use of generalized field transforms,! 
Maxwell's equations for inhomogeneous media with 
arbitrary source distributions are converted into a set 
of first order ordinary differential equations for the 
forward and backward vertically and horizontally pola
rized wave amplitudes. Since the stratified medium is 
nonuniform, the wave amplitudes are coupled. Explicit 
expressions for the coupling coefficients are derived 
and .the results are shown to satisfy the reCiprocity re
lationships in electromagnetic theory. An iterative 
method to solve the coupled equations for the wave 
amplitudes is outlined. 

The solutions derived in this paper can be applied to 
a very broad class of problems such as propagation in 
the vicinity of a coast line where both the height and 
electromagnetic parameters of the earth's surface vary. 
The analysis can also be applied to problems of remote 
sensing such as mapping the water table or detection of 
buried objects of finite cross section (Fig. 2). Exact 
boundary conditions are imposed in the derivation of 
these solutions and, since the field expansions do not in 
general converge uniformly at all points, orders of 
integration (summation) and differentiation are not in
terchanged. 

It is interesting to note that when surface impedances 
are used to characterize the bounding media, certain 
additional terms arise in the expression for the scatter
ing coefficients, (4. 5). These terms which are propor
tional to the surface impedances or admittances6 •8 have 
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no counterpart in our present analysis in which exact 
boundary conditions are imposed. Hence, these spurious 
terms, which tend to vanish as the conductivity of the 
bounding media increases, should be disregarded when 
the surface impedance concept is employed. In addition, 
when surface impedances are used in the analysis, the 
lateral wave contributions to the full wave expansions, 
(2.3) and (2.4), vanish. Thus boundary value problems 
should be carefully examined before employing impe
dance boundary conditions. 
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The case of a unification E of two given groups K and H when K is invariant in E (i -unification) 
is investigated. Necessary and sufficient conditions for the existence of E are found. It is shown that 
any i -unification can be constructed as a factor group of the simplest i -unification, i.e., the 
semidirect product K®H with respect to a given homomorphism T:H - Aut( KJ. This construction is 
called the generalized semidirect product (GSP). The i -unifications are put in correspondence with 
the group extensions via the GSP. The significance of the GSP is illustrated in elementary particle 
and solid state physics. 

1. INTRODUCTION 

The problem of coupling two partial symmetries of a 
physical system is encountered in different fields of 
physics: combination of the Lorentz group with the trans
lational group into the Poincare group; coupling of the 
point groups and the subgroups o~ the translational group 
into the crystallographic space groups; attempts to unify 
internal and space-time symmetries of elementary par
ticles, etc. This task has sometimes a trivial solution 
in terms of a semidirect product, like in the first men"' 
tioned example, as well as in all the 73 symmorphic 
space groups.! In the remaining space groups (there 
are 157 of them) the coupling is nontrivial: The point 
groups are nontrivially extended by translational sub
groups.2 

The idea of coupling an internal, e.g., the SU(3) sym
metry group, with the Poincare group comes from the 
need to explain the fact that SU(3)-multiplets of ele
mentary particles have common spin and parity and 
different masses. Attempts to find a satisfactory coupl
ing proceeded along the lines of group unifications and 
group extensions3 (precise definitions of these concepts 
in Sec. 2). In the unification approach one treats the 
Poincare group as a subgroup of a higher symmetry 
group E, and in the extensions it is a factor group. In 
the trivial case of a semidirect product these two con
cepts coincide. 

In our previous paper4 we have discussed extensions 
of a group G by a group K when a homomorphism 
a: G ~ Aut(K) exists [Aut(K) being the group of all auto
morphisms in K]. All such extensions were shown to 
possess a generalized semidirect product (GSP) form, 
which may considerably simplify their construction and 
the evaluation of their irreducible representations (on 
the basis of well-known methods for finding represen
tations of semidirect products5 ). 

Recent research6 has revealed that 101 of the 157 
nonsymmorphic space groups can be put into a GSP 
form. Though for them the point groups are not exact 
symmetries (i.e., they are not subgroups of the space 
groups), there appear new exact symmetry groups H 
as the second factors in the GSP expression [cf. Eq. (8) 
below]. These 101 space groups become in this way 
unifications of their translational and H -subgroups. The 
latter have a clear meaning in terms of properties of 
crystals. 

It is a general feature of all extensions E of G by K 
expressible as GSP's that they are also unifications of 
K and H. The purpose of this work is to find the widest 
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class of extensions obtainable as GSP's. It is substan
tially wider than the class treated in Ref. 4. The latter 
contains, in the terminology of this paper, only central 
GSP's [not to be confused with central extensions-Eq. 
(12) below]. 

In Sec. 2 we establish an equivalence between all ex
tenSions and the relevant unifications (which we call 
i-unifications). Lacking in the general case the mentioned 
homomorphism a: G ~ Aut(K), we found that unification 
theory, in which instead of G, the group H is the starting 
point, gave a more suitable mathematical framework 
in which we derived the general theory of GSP. We have 
reasons to believe that the groups H are endowed with 
important physical meaning, and the study of these 
groups is far more natural in terms of unifications. 

2. i-UNIFICATIONS AND EXTENSIONS 

Let K and H be two given groups. A unification of K 
and H is a third group E which is the product of two 
subgroups i(K) and u(H) that are isomorphic to K and 
H respectively. 

Definition l: A group E is an i-unification of two 
groups K and H if i(K) is invariant in E, Le., 

E = i(K)u(H), i(K) <l E, u(H) < E, 

where < and <l denote the subgroup and the invariant 
subgroup relations respectively. 

(1 ) 

On the other hand, a group E is an extension of a 
group G by a group K if there is an invariant subgroup 
i(K) in E, such that i(K) ~ K, and E!i(K) ~ G, Le., if one 
has an exact sequence 

The extension E can be defined as the set 
{(a,a)la E K,a E G} with the composition law 

(a, a){f3, b) = (a\}![a](~)w(a, b), ab), 

(2) 

(3) 

where \}!: G ~ Aut(K), w: G x G ~ K give the system of 
automorphisms and the system of factors respectively 
satisfying certain necessary and sufficient conditions. 7,8 

Lemma 1: (A) An arbitrary i-unification E of K 
and H is also an extension of G by K, where G is any 
group isomorphic to E!i(K) ~ u(H)/i(Ko), and Ko < K 
is defined by i(Ko) = i(K) n u(H). 

(B) An arbitrary extension E of G by K can be 
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viewed as an i-unification of K and H, where H is the 
corresponding extension of G by Ko, the latter being 
any subgroup of K invariant under all +[a] and satis
fying w(a,b) E Ko,Va,b E G. 

Proof: (A) Obviously i(Ko) is an invariant sub
group of u(H), so that u(H)/i(Ko) exists. The isomor
phism E/i(K) '==i.u(H)!i(Ko) is due to the fact that each 
coset in E with respect to i(K) contains precisely one 
coset of u(H) with respect to i(Ko), as easily established. 

Let {h(a) I a E G} be any set of representatives one 
from each coset of u(H) with respect to i(Ko)' Then 
one defines the maps lJi and w by 

lJi[a](a) = i-1(h(a)i(a)h(a)-1), Va E K, Va E G, (4a) 

h(a)h(b) = i{w(a,b»)h(ab), Va,b E G, (4b) 

which satisfy the mentioned necessary and sufficient 
conditions. 8 The groups E and H can now be eqUivalent
ly written as {(a, a) la E K,a E G} and {(y,a) II' E K o' 
a E G} respectively, with (3) as their composition law. 
It is possible to use the same lJi and w, defined by (4), 
both for E and H because i (K 0) is invariant under all 
automorphisms lJi[a], and all w(a, b) E i(Ko)' 

(B) Let E be an extension of G by K with given 
mappings lJi and w. There always exists a subgoup 
Ko with the required properties (at least Ko = K), 
which in its turn implies the existence of a group 
H < E, which is an extension of G by Ko with the same 
wand each lJi[a] restricted to Ko' It is easily seen that 
E = i (K)H, which makes it an i-unification of K and H. 

QED 

3. i-UNIFICATION AS GENERALIZED 
SEMIDIRECT PRODUCT 

In this section we discuss necessary and sufficient 
conditions for two groups K and H to have an i-unifica
tion E. 

To obtain necessary conditions, let us assume that 
E, K, H, i, and u satisfying Eq. (1) are given. The inter
section of i(K) and u(H) is, in general, nontrivial, and it 
defines two subgroups Ko < K and Ho <J H by 

This equation implies an isomorphism 1: Ko ~ H 0' 

which is 1 == u-1 
0 i. 

Owing to the fact that i(K) <J E, the conjugations in 
E give rise to a homomorphism T: H ~ Aut(K), i.e., 

(5) 

T[x](a) = i-1{u(x)i(a)u(X)-1) , Va E K, "Ix E H. (6) 

Restricting a to Ko or x to H 0' Eq. (6) reduces to the 
respective equations 

T[X](y) = 1-1(x1(y)x-1), VI' E K o' "Ix E H, (7a) 

(7b) 

Equations (7a) and (7b) are necessary conditions which 
we show now to be also sufficient. 

Theorem: Let the groups K and H have the sub
groups Ko < K, H 0 <J H, isomorphic via 1: Ko ~ H 0' and 
let a homomorphism T: H ~ Aut(K) be given so that 
Eqs. (7a) and (7b) are satisfied. Then the generalized 
semidirect twoduct (GSP) 

E == (K CD H)/Ko' (8) 
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where 

Ko = {(I', 1(1'-1» II' E K o}, 

is an i-unification of K and H, with i(a) = (a, 1)Ko, 
Va E K and u(x) = (E,x)Ko, "Ix E H [cf. (1)], 1 and E 

being the unit elements in H and K respectively. 
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(9) 

Proof: The semidirect product K CD H = 
{(a, x) I a E K, x E H} has the composition law defined by 
(a,x)(/3,Y) = (aT[x](!3>,xy). By making use of Eqs. (7a) 
and (7b) it is straightforward to show that its subset 
Ko is closed under multiplication, inversion, and conju
gation by any element of K CD H, so that it is an invar
iant subgroup. 

It is a known property of the semidirect product that 
theisomorphismsi'(o)== (a, 1), Va E K,andu'(x) == 
(E, x), V X E H are such that K CD H can be viewed as an 
i-unification of K and H .. Since i = w 0 i' and u = w 0 u', 
where w: K CD H ~ E is the natural homomorphism 
[Ker(w) = Ko] preserving all relations in (1), the group 
E is also an i -unification of K and H. QED 

Remark 1: It is noteworthy that, for given K,H and 
T, the Simplest possible i-unification K CD H contains 
among its factor groups all the other i-unifications. 

Corollary: In the GSP given by (8) relations (5) are 
satisfied. 

Proof: The set i(K) n u(H) consists of those cosets 
in K CD H which can be simultaneously written as 
(a, l)Ko and as (E, x)K'. The former can be expressed 
as ({aI', 1(1'-1» II' E K], and it contains (E, x) if and only 
if a E Ko and x E H o' which implies (5). QED 

Remark 2: If K,H,Ko,andHo are generated each 
by a subset of elements (in particular by a finite number 
of generators), then for the possibility to construct the 
GSP [cf. (8)] it is sufficient to check Eqs. (7a) and (7b) 
only for the generating elements. 

4. SPECIAL CASES OF GSP AND EXAMPLES 

Different choices of the homomorphism T and the sub
group K 0 provide us with important special cases of 
GSP. 

Definition 2: If Ko ·is the center C of K or its sub
group Co, then the corresponding GSP we call central 
GSP; otherwise, a noncentral one. 

In Ref. 4 we have shown that any extension of G by 
K can be put in the central GSP form if lJi is a homo
morphism (denoted by a).9 The following lemma es
tablishes a natural connection between the possible 
homomorphic property of lJi and the corresponding cen
tral character of the GSP. 

Lemma 2: If E is an extension of G by K with 
lJi: G ~ Aut(K) being a homomorphism, then it has a 
central GSP form, and vice versa, a central GSP always 
implies lJi to be a homomorphism. 

Proof: The center C is invariant under every auto
morphism in K. Conjugating i(a) , a E K with h(a)h(b), 
a, bEG, and making use of (4a) and (4b), one arrives at 

lJi[a]{lJi[b](a» = w(a,b)lJi[ab](a)w(a,b)-1. 

Oviously lJi is a homomorphism if and only if w(a, b) E C, 
Va,b E G. QED 
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Remark 3: In the general case replacing u(x) in (6) 
by i(y)h(a), y E K o, a E G, and using (4a), one gets the 
connection between 'Ji and T: 

T[x](a) = y'Ji[a](a)y-1. (10) 

For central GSP's and only for them (10) simplifies to 

T = a 0 n, (11) 

with a = \II and n: H -; G. 

Within the central GSP's there are important special 
cases due to the possibility of having T and/or Ko tri
vial. When T is trivial, we talk about the generalized 
direct product (GDP) known in the literature as central 
extensions 11: 

E = (If 0 H)/Co (12) 

[ef. Eqs. (8) and (9), Co = Ko is a central subgoup of K]. 

Remark 4: If one has two groups K and H and one 
wants to check if a GDP can be built out of them, then 
beside T being trivial, Ko must be central in K l condition 
(7b)], and H 0 central in H [condition 7 (a)]. 

The best known example of GDP was proposed by 
MicheP2: 

E = (50 P)lz2, 

where 5 is a group of internal symmetries and P is 
the covering of the Poincare group. 

(13) 

If Ko is trivial, the GSP reduces to the semidirect 
product (SP). Among the well-known examples for SP 
are the symmorphic space groups in solid state physics. 

The simplest GSP is the direct product (DP), which 
occurs when both T and Ko are trivial. 

Remark 5: Let K,H,Ko a central subgroup of K, 
H 0 <J H, and an isomorphism Z: Ko -; H ° be given 
(making H 0 Abelian). In order to construct a central 
GSP it is less practical to look for a T which satisfies 
(7a) and (7b) than for a homomorphism a: HIH ° -; Aut(K) 
restricted only by 

a[a](y) = Z-l(h(a)Z(y)h(a)-l), Vy E Ko' Va E HIHo, (14) 

where h(a) are arbitrarily chosen representatives one 
from each coset of H with respect to Ho' The connec
tion between a and T is given by (11) and its inverse 

a=Toh. (15) 
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An instructive illustration of the central GSP which 
does not reduce either to the GDP or to the SP is 

(16) 

If X is the time reversal,13 then the nontrivial inter
section of i(K) and u(H) implies the following relation 
between the baryon quantum number B and the spin J: 

(- I)B = (_ 1)2J. 

[For hadrons the same relation followS,12 due to Zz. 
also from (13).] 

When X is the charge conjugation,4 the nontrivial T 

reflects the incompatibility of the charge conjugation 
quantum number and the additive quantum numbers of 
the internal symmetry group. 

Whenever one combines a symmetry group with an 
involutive discrete symmetry, the minimal extensions 
[i.e., those for which G in (2) is Z 2] are essential. It 
is shown8 that every·minimal extension is an easily 
obtained GSP and that central as well as non-central 
GSP's occur naturally among them. 

·This work is supported by the Republican Community for Scientific 
Research of SR Serbia. 

tpresent address: Department of Physics, Duke University, Durham, 
N.C. 27706. 

IL. Jansen and M. Boon, Theory of Finite Groups. Applications in 
Physics (North-Holland, Amsterdam, 1967). 

2E. Ascher and A. Janner, Helv. Phys. Acta 38, 551 (1965). 
3G. C. Hegerfeldt and J. Hennig, Fortschr. Phys. 16,491 (1968). 
4Dj. Sijacki, ·M. Vujicic, and F. Herbut, J. Math. Phys. 13, 1755 (1972). 
5G. W. Mackey, Induced Representations of Groups and Quantum 

Mechanics (Benjamin, New York, 1968). 
61. Bozovic, M. Sc. Thesis (Belgrade University, 1972). 
7A. G. Kurosh, The Theory of Groups (Chelsea, New York, 1955), 

Chap. XII. 
SF. Herbut, M. Vujicic, and Dj. Sijacki, J. Math. Phys. 14, 1121 (1973). 
9 Actually, in Ref. 4 we have proved this only for 'I' = (7 having at 

most one image in every coset of Aut( K) with respect to the 
subgroup of all inner automorphisms. This additional restriction, 
which Lemma 2 in the present paper proves to be unnecessary, was 
due to our desire to build our approach entirely on that of Michel 
(Ref. 10). 

10L. Michel, "Invariance in Quantum Mechanics and Group 
Extensions", in Group Theoretical Concepts and Methods in 
Elementary Particle Physics, edited by F. Giirsey (Gordon and 
Breach, New York, 1964). 

IlL. Michel, "Relativistic Invariance .... in Particle Symmetries and 
Axiomatic Field Theory, edited by M. Chretien and S. Deser (Gordon 
and Breach, New York, 1966). 

12L. Michel, Phys. Rev. 137, B405 (1965). 
13F. von Kamber and N. Straumann, Helv. Phys. Acta 37, 563 (1964). 



                                                                                                                                    

An analytic approximation method for the 
one-dimensional Schrodinger equation.1I 
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The problem with three classical turning points which must be solved in order to discuss "orbiting" 
collisions in molecular physics or "quasimolecular states" occurring in a-nucleus and heavy ion 
scattering is treated, using the approximation method already discussed in Paper I. The general 
statement of Paper I concerning complex conjugate turning points is thereby confirmed and the 
corresponding formulas known from Langer's method can be obtained as special cases. 

I. FORMULAS RELEVANT FOR THE: CONNECTION 
OF WHITTAKER FUNCTION 

The approximations to the solutions of the one-di
mentional Schrtidinger equation with two turning points 
at ~ 1 and ~2 are, as shown in Paper I (Ref. 1), 

(X')-1/2 W (2ixe- i n(lf1/2») ±K,1/4 , (1) 

with 

J: (1 + 2~K y/2 du = ~~ k(s)ds, ~ - t(~l + ~2) = ± 0, 

(2) 

(3) 

It should also be remembered that the argument of K 

in a wavefunction at pOints ~ < ~ differs by an amount of 
21T from that at pOints ~ > ~ for complex conjugate turn
ing pOints. In order to avoid confUSion, it is therefore 
useful to write 

K = K, _ with argK = 21T + argK, _ ,<, p, 

in all expressions where this difference may become 
relevant. 

For I x I -> 0, the Whittaker function can be approxi
mated (see, e.g.,Ref. 2) by 

( 

(2ix)1/4 
WK 1/4 (2ix) RI.,[i --3--

. r(4 - K) 
-2----

(2ix)3/4 ) 

r(i -K) , 

Ixl->o, IKI ;cO. 

(4) 

(5) 

Inserting the analogous expansions which can be derived 
from Eq. (2), 

(X't 1/2 (2ix)1/4 RI (4e iTT K) 1/4 1..
.fj{' 

(X't 1/2 (2ix)3/4 

1 (,' 
RI (4e- i1T Kt1/4 ,"J~ K(s)ds, 

vK ~ 

one obtains an expression that can be considered as the 
expansion of 

(6) 
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(7) 

The analogous expression 

(x,)-1/2 W- K•1I4 (2ixe-iTT) =..j ;k [ Q(K) exp(if kds ) 

+ iQ(Ke-2i1T ) exp(- ifkds)] (8) 

can be obtained from Eq. (6) by the substitution k(~) -> 

e-iTTk(~). 

For later use the circuit relations for the Whittaker 
functions 

W (2ixe-2 ill) = _ 21Ti e-i1TKW 
K.1/4 r(t - K)r(i _ K) -K.1/4 

(2ixe-iTT) + e-2i1TKWK.1/4 (2ix), (9) 

W (2ixe-3iTT ) = - 21Ti e-i1TKW_K.1/4 
-K.1/4 r(t + K)r(~ + K) 

(2ix) - e-2i1TKW_K.1/4 (2ixe-iTT ), (10) 

and their asymptotic formulas, 

e2i1TRK 1 ((t), (x,)-l/2 W_ (2ixe-iTT-2irrn) ""'-A-' - exp iJ~ kds 
d/4 Q(K) .fk t (i1) 

(x')-1/2W (2ixe-2iTTR) "'" ei1TK-2irrnKn(K) _1_ 
K.1/4 .fk 

x exp - if/kds , n (K) = e-K(K)K, (12) 

valid for I arg(e-2 im J? kds) I z. 1T, should also be remem
bered . 

II. PROBLEMS WITH THREE CLASSICAL TURNING 
POINTS 

The shape and the size of the maximum and the mini
mum of the effective potential, as illustrated in Fig. 1, 
can be assumed to be arbitrary (indicated symbolically 
by the dashed line), except that no more than two turning 
points should come close together. It is therefore 
assumed that there is an energy value Eo for which the 
turning pOints are all real and well separated from each 
other. 

In the following all relevant variables, such as K, x, L 
which lie in the region of the first (last) two turning 
points shall be labeled by the index 1 (2). For instance, 
choosing 

argK = 0 for ~ -> co (13) 

Copyright © 1973 by the American Institute of Physics 1519 
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V(g) 

(e ffective potential 

VmaxH-fr-----=---r-.. 

EO~~~-~~-~I-~~---
I I I 

Vmin I-T-+-~""""'" I l---_J ! : I / ... -, I', 
l........ I I ..... , ..... 

: I / I I ........... -..._ --------- ; 

FIG. 1. 

and 

arg(~-~)==1T for~<~, 

which leads to 

argk == ~1T for ~ ~ 0, (14) 

one would be led, by considerations quite analogous to 
those of Paper I [Ref. 1; compare with Eq. (16) there] to 
the assignments listed in Eq. (20) for argK1 and argK2. 

It is now desirable to connect the Whittaker function 
which approximates the physical wave function in the 
region of ~1 and ~2 with the corresponding Whittaker 
function in the region of ~2 and ~3' which results in a 
formula like 

(1/v'ikT) exp(- II kids) ~ [£(k)/v'IkT] 
t t 

exp[- i(J Iklds -1T/4)] +.... (15) 

From here, all relevant physical information could be 
obtained. In (15) it is understood, that the left (right) 
side should be used as approximation on the left (right) 
side of all turning pOints and that the misSing integra
tion limit should be taken to be the smallest (greatest) 
real turning point. 

First we shall construct a connection formula for the 
corresponding Whittaker functions. By using Eq. (13), 
(14) and the asymptotics equation (11), this is seen to be 

f(K ,K ) 
(x1Y1/2W_K•1I4 (2ix 1e-3i1r ) ~ (- i) n(K~n(:2) 

(X2)-1/2WK,1/4(2ix2) + .... 

The factors multiplying the yet unknown function 
f(K1' K2) have been added for convenience. 

There are possibilities of arriving at Eq. (16): 

(16) 

(A) Eqs. (8) and (11) can be used to relate the 
Whittaker functions to the corresponding WKB solutions 
at ~ 1 which should then be identified with one another. 
Thus we are first led to 

(XU-1/2W_K.1/4 (2ixle-3i1r) 

~ /~(X')-1/2[ei1r(ltclt2)n(K e-2i1r)n(R) y 2 2 1 2 

X W (2ix e-3i1T ) _ ie- i1ll<l n(K 1) 
-K2 ,1/4 2 n(K

2
) 

x Wit 1/4(2ixe-2i1T)] 
2 , 

(17) 

By using the circuit relations (9), (10) it is now easy 
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r(t + K2)r(t + K2 ) 

x ei1TKn(Kl)n(K1e-2i1T) 
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(18) 

(B) Similarly, connecting the two Whittaker functions 
at ~2' we obtain Eq. (16) with 

fi ( 21Te -i1TK In(K ) 

f(Kl> K2) == vi r(t + K
1
)ra\ K

1
) 

e-2i1TK2n(K2)n(K2) - e-i1Tltlfl(K2)n(K2e-2i1T~' (19) 

It can be shown [see Eqs. (20b), (20c) below] that these 
two formulas (18), (19) are identical for E ~ Eo and can 
therefore be looked upon as continuations of each other. 
The final connection formula (15) can now be obtained by 
inserting the asymptotics of the Whittaker functions into 
Eq. (16) and using the following relations: 

\: t, ~ V < E < V 
e i1TK 1 == exp (i I~ kdS) == exp (i l~ kds) I 
ei1TK2 == exp(i~:2kdS)== exp(i{3 kds) , min - - max' 

e2i1TKl+i1T~ == exp(i ~:2 kdS) 

== exp(- i{~lkldS), E> Vmax' 

ei1TK ,+ 2i1TK2 == exp(i~:3kds) 

== exp -(Ir:3IkldS), E< Vmin ' 

which again can be read off from Paper I and the aSSign
ments (13), (14). 

Remembering 

and using the asymptotics for the n functions derived in 
the Appendix, the final result can be formulated as 
follows: 

Vmax < E 

21Te-2K2(K2)2K2 
£(k) == 1 3 

r(4 + K2 )r("4 + K2 ) 

+e-4i1T(Kl+K2) ""1 for IK21 ~co, (20a) 

for I K21 ~ co (20b) 

V min ~ E ~ EO (K2 == e i .. /2 I K21 ; K 1 == e i1r I K 11), 
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2 -2Kl( )2K l 
.c(k) = e-2i1T(Kl'K2) 7Te K1 "" 2e-2i1TK2 

r(i + K 1)r(t + K 1) 

X COS(27TK 1) for I K 11--) 00 (20c) 

E::-sVrnin (K1=IK11) 

27Te-2Kl(Kl)2Kl 
.c(k) = 1 3) "" 1 for I K11 --) 00. (20d) 

r(4: + K1)r(4: + K1 

III. DISCUSSION AND CONCLUSION 

The connection formula which can be obtained by 
Langer's method for three real, well-separated turning 
pOints is shown to be (see, e.g., Ref. 3) 

This does agree with Eq. (20b) or Eq. (20c) (both valid 
for three real turning points) only by taking I K21 --) 00 , 

which means well-separated turning pOints. Similarly 
EQ. (20a) or Eq. (20d) (both valid for one real and two 
complex conjugate turning points) does agree with the 
corresponding formular for one real turning point, which 
can be obtained by Langer's method, only by taking 
I K21 --) 00 or I K 11 ~ 00, respectively. In both cases this 
means, that the distances of the complex turning points 
from the physical region of the position variable, as 
measured in units of a local wavelength, should be large. 
Inserting Eqs. (20a) into Eq. (15), it can be verified that 
the resulting connection formulas are continuations of 
one another for the different energy regions summed up 
in Eqs. (20a)-(20d). 

Real potential functions with at most three classical 
points are occurring in both molecular and nuclear phy-
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Sics. In order to discuss physical effects which are 
related to the problem of three claSSical points such as 
"orbiting" collisions in molecular physics (see, e.g., 
Ref. 4), or "quasimolecular states" occurring in a
nucleus and heavy ion scattering (e.g., Ref. 5), the above 
mathematical formulas could therefore be readily used. 

It would be desirable to extend the above considerations 
to become a general approximation method for the one
dimensional Schrodinger equation. For this purpose, a 
quantitative test for the approximations as a function of 
the turning points which are not taken into account would 
be necessary. 

APPENDIX 

From the asymptotic expansion for the r function, 

I argKI < 7T 

together with the relation 

1/r(b - K) = [2 sifi1T(b - K)/27T]r(1- b + K), 

the following relations can be derived, which contain all 
relevant asymptotic formulas: 

n(K) "" .f2!n/O(K) 

n(Ke±i1T) "" ../2fi e±illKn(K) 

n(Ke±2i1T) "" 0 

n(Ke±4i,,) = - n(K). 

'w. Hecht, J. Math. Phys. 13, 1291 (1972). 

I argKI < 7T, 

2Buchholz, The Confluent Hypergeometric Function, Springer Tracts in 
Natural Philosophy (Springer-Verlag, Berlin, 1969), Vol. IS. 

3Berry, Proc. Phys. Soc. Land. 88, 285 (1966). 
4R. Herrn, J. Chern. Phys. 47,4290 (1967). 
5K. W. McVoy, Phys. Rev. C 3, 1104 (1971). 



                                                                                                                                    

Radial Jost functions in scattering theory* 
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Several methods have recently been proposed for representing oscillatory wavefunctions by relatively 
slowly varying modulations of known oscillatory functions. Direct computation of the modulating 
function leads to efficient numerical or variational procedures and to accurate interpolation over 
energy or other parameters of a scattering problem. A new method, based on the phase integral 
(WKB) formalism, is proposed here in a form applicable to multichannel scattering. The method 
generalizes the phase integral method to make use of arbitrary oscillatory comparison functions, 
rather than just plane waves as in the usual formalism. It makes use of the modulating factor of the 
radial Jost function. Several examples of the proposed method are given, including an application to 
a two-channel model problem. 

I. INTRODUCTION 

In many applications of quantum mechanics to colli
sion theory, it is necessary to integrate systems of 
differential or integrodifferential equations in the range 
of positive energies. This produces oscillatory wave
functions. Recently, several computational methods 
have been introduced with the common feature of rep
resenting the computed wavefunctions by relatively 
slowly varying modulation of known oscillatory func
tions. The modulation is computed directly, and the 
accuracy of numerical integration is governed by the 
smoothness of the potential function, rather than of the 
oscillatory wavefunction. 

The method of Gordon 1 makes use of a piecewise 
approximation to the potential function, matching exact 
solutions for constant or linear potential segments at 
the segment boundaries. The method of Light2 uses an 
exponential matrix formalism whose accuracy is gover
ned by the variation of the potential function. 

The present paper is especially concerned with seve
ral related methods, to be referred to here as variable 
phase methods, 3,4,5 whose common basis was discussed 
in a recent note. 6 That discussion is extended here to 
point out the close relationship between these methods 
and the well-known phase integral method, which is the 
basis of the WKB approximation in a single-channel 
problem. 7 The necessary definitions and derivations 
relevant to the present discussion are given in Sec. II. 

Section ill proceeds to a synthesiS and generalization 
of these ideas, leading to a formal and computational 
procedure that represents an extension of the phase 
integral method to multichannel problems. A modulat
ing function is defined that is closely related to the 
radial function considered originally by Jost,8 and which 
gives the Jost function,8 known to have very regular 
analytic properties, as its end value when computed over 
the full range of the radial variable. 

The present work differs in approach from recent 
proposals by Thorson and collaborators9 for computa
tional methods based on the phase-integral formalism. 
In particular, the present method applies directly to 
multichannel scattering. 

Some simple examples of the proposed formalism 
are given in Sec. IV, including a two-channel model 
problem to illustrate use of the multichannel equations 
proposed here. Section V concludes with a discussion 
of the possible advantages of this formalism, in com
parison with variable phase methods. 
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II. VARIABLE PHASE AND PHASE INTEGRAL 
METHODS 

Consider the radial Schrodinger equation, in Hartree 
atomic units, 

(1) 

where k 2 is nonnegative. For multichannel scattering, 
Vo' V l' and u become matrices, and k2 is a diagonal 
matrix, with positive values for open scattering chan
nels. In the methods to be considered here, it is assum
ed that solutions are known of a comparison equation 

(~ + k2 - 2V (r»)w(r) = 0 (2) dr2 0 , 

which can also be considered as a matrix of equations 
for multiChannel scattering. For simplicity, Vo(r) will 
be assumed here to be a diagonal matrix. 

For a single open channel, the regular solution of Eq. 
(1) can be expressed in the form 

(3) 

where Wo and w 1 are real-valued solutions of Eq. (2) 
that are, respectively, regular and irregular at the co
ordinate origin, r = O. These functions are assumed to 
be normalized so that their Wronskian is 

and to have equal amplitude as r ---> CIJ, but to differ in 
phase by IT /2. The asymptotic forms are 

Wo ~ k- 1 / 2 sin8(r), w 1 ~ k- 1 / 2 cos8(r), 

(4) 

(5) 

where 8(r) depends on the choice of comparison potential 
Vo' If this is the centrifugal potentiall(l + 1)j2r2, then 

8(r) = kr - tllT, (6) 

and wo' w 1 are spherical Bessel functions multiplied by 
r. For a Coulomb or dipole potential, 8 (r) must be suit
ably modified, but the formulas derived here retain 
their validity. For multichannel scattering, the func
tions c and s of Eq. (3) become matrices, and uo(r) be
comes a matrix. 

The auxiliary functions c(r) and s(r) are not uniquely 
defined by Eq. (3). In the variable phase method3 (and 
the related methods of Johnson and Secrest4 and of 
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Sams and Kouri5 ), these functions are constrained by 
the auxiliary condition 

so that 

uo(r) = wo(r)c(r) + wI (r)s(r). (8) 

The effect of this constraint condition is to give coupled 
first-order equations for the auxiliary functions when 
Eq. (3) is substituted into Eq. (1): 

c' = 2w 1 V 1 (w OC + w 1 s), 

s' = - 2wo V l (woc + wls). (9) 

The regular solution uo of Eq. (1) is obtained from these 
equations if, at r = 0, 

c(O) = 1, s(O) = O. (10) 

With this boundary condition, Eqs. (9) are equivalent to 
coupled integral equations of Volterra form, 

c(r) = 1 + 2 t wl(r')Vl(r')uo(r')dr', 
o 

s(r) = - 2 t wo(r')Vl(rl)uo(rl)dr'. 
o 

(11) 

These equations as given are in proper matrix form for 
multichannel scattering. 

Scattering information is obtained from the function 
or matrix 

t(r) = s(r)c-l(r), (12) 

whose asymptotic value as r -7 eX) is the reactance mat
rix (K matrix) if Vo is the centrifugal or Coulomb 
potential. 

In the phase integral method,7 the auxiliary functions 
c(r) and s(r) are constrained not by Eq. (7) but by the 
condition that the function 

(13) 

should be a solution of Eq. (1), independent of the regular 
solution uo' The formalism applicable to a single
channel problem cannot be applied directly to multi
channel scattering. For a single scattering channel, the 
specific condition imposed on c(r) and s(r) is that the 
Wronskian 

should be constant. Equivalently, 

(c 2 + s2) + (w5 + w~) (cs ' - sc') = 1. 

This condition can be expressed most conveniently in 
terms of two functions 

qw = (w5 + wV-l, 

q = (u~ + u~)-1 = [(c 2 + s2) (w5 + w~)]-1, 

which are real and positive throughout the interval 
o < r ~ eX). These functions are finite in this interval 
if the potentials V 0 and V 1 are nonsingular except at 
r = O. Equation (15) implies 

d cs' - sc' - tan- l (sc- 1 ) = = q - q . 
dr c 2 + s2 w 
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The function q(r) satisfies a nonlinear differential 
equation 7 

d2 
ql/2 _ q-l/2 = q2 _ Q2, (18) 

dr2 

where 

Q2 = k 2 - 2 V 0 - 2 V l' 

The function qw satisfies an analogous equation. It is 
convenient to define q by the boundary condition 

(19) 

q - qw -7 0 (20) 

as r -7 eX). Then the scattering phase shift relative to 
the comparison wave function is given by Eq. (17) as the 
phase integral, 

o = 1"" [q(r') - qw (r')] dr'. 
o 

(21) 

It should be noted that Eq. (20) requires c 2 + S2 = 1 as 
r -') eX). This is not in general compatible with the nor
malization of uo(r) implied by Eq. (10). The value of 
c(O) must be determined by inward integration of q(r). 

The WKB method 7 makes use of the approximation 

q ~ Q = (k2 - 2V)1/2, (22) 

with qw = k for comparison potential Vo = O. The lower 
limit of the phase integral is taken to be the outermost 
classical turning point r 0' where k 2 - 2 V vanishes. 

III. THE RADIAL JOST FUNCTION 

The regular and irregular real wave functions defined 
above can be expressed in terms of complex functions 7 

w = w 1 + iwo = q;l/2 exp~ f; qw(rl)dr), (23) 

u = u 1 + iuo = q-1/2 exp~ for q(rl)dr} 

It is convenient to consider the wavefunction 

Wy = ue- i6 

such that, using Eq. (21) for the phase integral, 

y(r) = (qw/q)l/2 exp(-i f' (q - qw)dr)

From Eqs. (3) and (13), 

y = (c + is)e-iI'), 

(24) 

(25) 

(26) 

(27) 

where s(O) = 0 as in Eq. (10), but c(O) cannot in general 
be set equal to unity. From Eq. (20), as r -7 eX), 

y(cx;) = 1, c(eX) = coso, s(cx;) = sino. 

As r -70, 

so Eq. (27) requires that 

c(O) = (qw(0)/q(0»l/2, s(O) = O. 

If w is exp(ikr), then Wy as defined here is the radial 
wavefunction /(-k,r) considered by Jost. 8 

The function y(r) is expected to have very regular 
analytic properties, because of the simple analytic 

(28) 

(29) 

(30) 
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behavior of qw and q. To take practical advantage of 
this, the functional form wI' can be substituted into the 
radial Schrodinger equation (1), and then Eq. (2) can be 
used to obtain the differential equation for y(r), 

(~ + 2 w' ~- 2V1(r»)y(r) = O. 
dr2 W dr 

(31) 

In order to avoid the asymptotic solution w * /w, this 
equation must be integrated inwards, starting from the 
boundary conditions 

(32) 

From Eq. (23), the logarithmic derivative of the com
parison function w is 

w' 1 q~ . 
-=---+zq. 
w 2 qw w 

(33) 

Hence Eq. (31) involves only the slowly varying function 
q", and the perturbing potential V1(r). When VI vanishes, 
the solution y(r) is a constant. These properties should 
make Eq. (31) especially useful for numerical computa
tions. 

The multichannel generalization of Eq. (31) is 

(~ + 2WplWp!!...) Ypn(r) = 2 :6 WplVpqWqYqn(r), (34) 
dr2 dr q 

where the indices range over the number of open chan
nels coupled by these equations. For simplicity, closed 
channels are not considered here, the comparison poten
tial is assumed to be diagonal, and the potentials are 
considered to be local operators. A matrix solution is 
to be obtained subject to the boundary conditions 

Ypn(OO) ~ 6pn ' Ypn(oo) ~ O. (35) 

Then the reactance matrix is given by 

Kpq =:6 Im[y-1(0)]pn {Re[y-l(O)]}~~. 

" 
(36) 

This formula is obtained by considering the matrix 
wavefunction wyy-1(0), which is purely real at r = 0, 
so that its imaginary part is the regular solution mat
rix uo' Then by comparison with Eq. (12), 

t(r) = Im[y(r)y-l(O)] {Re[y(r)y-1(0)]}-1. (37) 

Since 1'(00) = 1, the asymptotic value of this expression 
gives the K matrix as indicated in Eq. (36). 

The matrix function y(r)y-l(O) can be shown to 
approach J*(k) as r --700, where J(k) is the Jost function 
or matrix.s Since 1'(00) = 1, 

J*(k) = 1'-1(0). 

IV. THREE SIMPLE EXAMPLES 

A. Spherical Bessel functions 

(38) 

The regular and irregular spherical Bessel functions 
(multiplied by r) are solutions of Eq. (1) if 

VI = 1(1 + 1)/2r2. 

Since the differential equation is homogeneous in r, it 
is convenient to use the dimensionless variable 

z = kr, 
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and to replace k by unity in Eqs. (1) and (2). Then the 
comparison function is 

W(z) = e i2 = Wo + iw 1• (40) 

Equation (31), for n(z), is 

( !!.:... + 2i !!... - I (I + 0) y(z) = 0, (41) 
dz 2 dz z2 

to be integrated inwards from boundary values 

1'(00) = 1, 1"(00) = o. (42) 

Equation (41) has a finite series solutionlO 

I 

YI(Z) = Z-I :6 gaza, 
a=O 

(43) 

where the coefficients are integers multiplied by powers 
of i, 

(21 a) I 'I-a (21 - a) ga = - .• = (21 - 2a - O!! ii-a, (44) 
(21 - 2a)!!a! a 

with the convention that (-1)!! = 1. Because the com
parison potential is singular in this example, YI(z) is 
singular at the origin. To insure that the function U o 
is the regular solution, 1'1 must be multiplied by a phase 
factor to make the leading term purely real at z = O. 
From Eq. (44), this factor is i-I. The resulting function 
can be expressed in terms of real polynomials Al and Bz, 

i-I Yz (z) = Z-I [(AI(z) - iBI(z)]. 

The function q defined by Eq. (16) is 

ql(z) = z21/(A~ + Bz2). 

For example, for I = 3 

A 3(z) = 15 - 6z2, B 3(z) = 15z - z3, 

q3(z) = z6(225 + 45z2 + 6z4 + z6)-1. 

Because ql(z) is finite and positive for positive z, 

(45) 

(46) 

(47) 

A~ + Bl is an even polynomial with positive coeffi
cients. From Eq. (44), these coefficients are integers. 

Equation (24) gives compact formulas for the regular 
and irregular s:Jherical Bessel functions 

jl(z) = z-luIO(z) = z+l(A~ + B~)1/2 

x sin1
2 

~21(A2 + B2)-ld~ o Z I 

nz(z) = - z-lun (z) = - z-l-l(A~ + B~)1/2 

x cost ~2Z(A~ + B~)-ld~. 
o 

Equation (17) in the present case becomes 

d~ tan-1 (~~z) = qz(z) - 1, 

so that 

2 ~2Zd~ 2 (Bz(Z») 
1 = 1 qz(~)d~ = z - tan-1 -(-) . 
o A~ + B~ 0 Al z 

This agrees with the assumed functional forms 

jz(z) = Z-l Im[w(z)i-ZYI(z)] 

= z-l-1(A~ + B~)1/2 sin[z - tan-l (Bz/AI )], 

(48) 

(49) 

(50) 
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nz(z)= - z-1 Re[w (z)i-Zyz (z)] 

=: - z-H(A~ + B¥)I/2 cos[z - tan-l (BzIA)]. (51) 

These formulas are equivalent to the well-known 
finite expansion of the spherical Bessel functions,lO 
but they appear here in an especially simple form for 
accurate numerical computation except in the limit 
z -to. For small values of z, the first of Eqs. (51) must 
lead to exact cancellation of the first 21 powers of z, 
sincejz(z) varies as zz. In fact, it can easily be verified 
that Hz/AI is the lth convergent of the continued fraction 

Z Z2 z2 
tanz=---···. 1- 3- 5-

(52) 

This can be used to obtain simple formulas for comput
ing A and BI by recurrence on the index l. 10 From 
Eqs. (42) and (45), the asymptotic value of tan- 1(-B/A z) 
is the phase of i-t , or -ll1/2, in agreement with Eq. (6). 

In scattering theory, calculations with the centrifugal 
potential as comparison potential give the usual defini
tion of non-Coulombic partial wave phase shifts. The 
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comparison wavefunctions required are 

(53) 

The logarithmic derivatives required in Eqs. (34) can 
be expressed entirely in terms of the polynomials A 
and B, USing Eq. (33) and the recurrence formulas men
tioned above. The result is 

w/ -/ AIAz_l + BzBz-I . z2Z (54) -=-+z +t ---
WI z A¥ + B~ Af + B¥ 

B. Exponential potential well 

Exact phase shifts are known for s-wave scattering 
by an attractive exponential potential,11 

VI=-e-r • (55) 

Equation (31) for this problem is 

- + 2ik - + 2e-r y(r) = O. (
d 2 d ) 
dr2 dr 

(56) 

If t = e-r is used as the independent variable, this be
comes 

~ = - t"l (1 - 2ik) t!l:. + 2y) , 
dt2 dt 

(57) 

with boundary conditions at t = 0, for y(t), 

y(O) = 1, 
dy _-2 
dt (0) - 1 - 2ik' (58) 

This equation was integrated from t = 0 to t = 1, 
using the Runge-Kutta-GHl method,12 for values of k 
ranging from 0.1 to 4.0. Real and imaginary parts of 
y(k; r) are shown in Fig. 1 and argy is shown in Fig. 2. 
With less than thirty integration points for any k value, 
the computed phase shifts agree to four significant 
decimals with the exact results. 1 I The smooth nature of 
y(r) is evident from the figures. This property of y 
makes it especially suitable for efficient numerical 
integration. 

C. Two-channel Huck model 

A simple two-channel" model problem, with exact solu
tions computable in terms of elementary functions, has 
been used by Huck and others to test multichannel varia
tional methods. 13 The comparison potential is zero, and 
the perturbing potential matrix is purely nondiagonal, 
with 

= 0, r >a. 

The two k values are related by 

kf - k~ = 26E = O. 75. 

Exact results for the elastic and inelastic cross sec
tions Qpq' computed for kl = 1. 0, k2 = 0.5, a = 1. 0, 
and C2 = 2.0(2.0)12.0 have been given elsewhere.13 

(59) 

(60) 

As a test of the present method, these results have 
been duplicated by numerical integration of Eqs. (34) 
for the multichannel matrix function y pn (r). Since the 
potential function vanishes for r > 1. 0, the integration 
is carried inwards from 1. 0 to O. O. Then the K matrix 
is computed from Eq. (36), and cross sections are ob
tained by the usual formulas. 



                                                                                                                                    

1526 Robert K. Nesbet: Radial Jost functions 
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1.8 

1.6 Huck Model 

1.4 l'pq (r) for C2 = 10 
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FIG. 3. Y pq(r) for Huck model, C2 = 10. O. 

Results for the real and imaginary parts of the func
tions Y pn (r), computed for c 2 = 10.0, are shown in Fig. 3. 
The smooth nature of these functions, and hence their 
suitability for numerical integration, is evident from 
the figure. Results obtained with 21 integration pOints 
in the interval 0 :s r :s 1 give cross sections that agree 
with exact results to within two units in the sixth sig
nificant decimal place. 

V. DISCUSSION 

The examples given here illustrate the expected 
smooth analytic behavior of the function or matrix y(r). 
This formalism should lend itself to efficient numerical 
integration or to rapid convergence of variational expan
sions. Such variational expansions will be considered 
in a separate paper.14 

In comparison with the method of Sams and Kouri,5 
which uses Eqs. (11) directly, and to the closely related 
method of Johnson and Secrest,4 the present method 
loses the advantage of working with first-order differen
tial equations. The number of equations for a given 
differential system is the same, since solving coupled 
equations for c(r) and s(r) is equivalent to solving a 
single equation for the complex function y(r). However, 
a second-order equation with first derivative terms, as 
in Eq. (31), is equivalent to two first-order equations if 
a method such as that of Runge and Kutta is used. 

The comparative advantage of the method proposed 
here is expected to lie in its complete elimination of 
oscillatory terms in the diagonal channel part of Eqs. 
(34). In contrast, oscillatory functions occur explicitly 
in the diagonal part of the integrands of variable phase 
methods, as in Eqs. (11). Integration over oscillatory 
functions by standard methods requires closely spaced 
integration points. The present method may eliminate 
this requirement expect for the unavoidable nondiago
nal terms in Eqs. (34). 
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The present method obtains both regular and irregu
lar solutions of a scattering problem. While in general 
this may be no advantage, it opens up the possibility of 
defining much more general classes of comparison 
functions than the usual spherical Bessel or Coulomb 
functions. Comparison functions obtained by numerical 
integration could be used in the equations of this method. 
This would allow simple computation of the scattering 
effects of variations or perturbations of the comparison 
potential function. 

Since the Jost function is obtained directly in the pre
sent method, it could be used to interpolate or extra
polate scattering data as a function of k or the energy E. 
It can be seen from Fig. 1 that the functions y(k; r) vary 
quite smoothly with k for all values of r. The limit as 
k -7 C() is especially simple, since y( cc; r) -7 1. The data 
in this figure suffice to determine wavefunction and 
phase shift to quite high accuracy over the range 0.1 :s 
k :s c(). 
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Applying the systematic method discussed in previous papers, we derive the invariants and the 
groups of the time-dependent Schrodinger equations for the rigid rotator and the symmetric top. The 
groups for these systems are found to be SO(3,2) (rigid rotator) and SU(2,2) (symmetric top). For 
the case of the symmetric top, it is found that under the symmetry breaking 
II = 12 = 13 .... II = 12=1= 1 3, where I l' 12, and 13 are the moments of inertia of the top, two of 
the time-independent constants of the motion become time-dependent constants of the motion. 

1. INTRODUCTION 

The symmetry properties of differential equations 
play an important role in understanding the fundamental 
properties of physics. Systematic methods for finding 
the symmetry of differential equations were introduced 
by Sophus Lie. 1 However, Lie's method is not general 
enough to obtain many phYSically important groups. For 
example, the 0(4) degeneracy group of a hydrogen atom 
cannot be derived by his method from Schrodinger's 
equation. 

In a series of papers (I-III),2,3 we have demonstra
ted the validity and necessity of generalizing Lie's origi
nal point transformations when one is conSidering the 
symmetry properties of partial differential equations. 
The essential point in the generalization is that the most 
general transformations which leave a system of partial 
differential equations invariant in form 4 must allow not 
only for the algebraic independence of the usual inde
pendent variables, and the unknown functions, but also, 
in general, for the algebraic independence of a subset of 
derivatives of the unknown functions. 

This leads to a new program for the discovery and analy
sis of the invariants of partial differential equations. As 
applied here, the program systematically determines a 
set of invariants {Q} such that for a given differential 
operator K, if KIf; = 0, then KQIf; = 0. The set {Q} maps 
the solution space {If;} of K into itself. Its elements form 
a Lie algebra and act irreducibly on the solution space. 

In order to realize this program, we have in this paper 
utilized a space-time dilation operator D and determined 
the Lie algebra corresponding to the transformed time
dependent Schrodinger operator D(H - io t)D-l with solu
tion space {DIf;}. The space-time dilation operator 
linearizes the spectrum of D(iot)D-l and the dynamical 
algebra of D(H - io t )D-1 contains finite order deriva
tives only. The invariants Q oj the original Schrodinger 
equation, obtained by inverse dilation, comprise an 
isomorphic algebra even though some oj them are junc
tions oj derivatives oj arbitrarily high order. 

Here we use the approach just outlined to determine 
dynamical algebras and dynamical groups for the rigid 
rotator and symmetric top. The groups will be shown to 
be SO(3, 2) (rigid rotator) and SU(2, 2) (symmetric top). 

2. THE RIGID ROTATOR 
The Schrodinger equation for the rigid rotator is 

(L 2 .~) '" -il (I+I)ty (e "'\C = ° - lu t LJ elm , '#1 1m' 
1m 

where Clm are arbitrary constants and 

L2 =-y2oxox + 2x0 x -y-20 <l>0¢ 
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with 

x = cose, y = sine. 

The transformation operator leading to a linear spec
trum 5 is seen to be 

D = exp{tot log(T + i)-I} (2.2) 

with 

I = ~ [- 1 + (1 + 4L2)l/2]. 

Applying it to (2.1) yields the transformed equation 

(2.3) 

where 

'" -ilt j(e,t/J,t) =LJ Clme Ylm(e,t/J). 
1m 

To find the spectrum generating algebra of Eq. (2. 3), 
and hence of Eq. (2.1), we choose as independent 
functions 

j.Jt.J ¢,jx .J ¢¢.Jx ¢.J¢t./tt 

jxt,j ¢¢¢.Jx ¢¢,j¢tt,jx ¢t.J¢¢t 

and let Q operator be of the form 

Q = Q¢¢o¢o¢ + QX¢oxo¢ + QX ox + Q¢o¢ + QtOt + QO. 

(2.4) 

Then the determining equations derived by expanding 
the equation 

and by making use of the linear independence of the 
above functions, are 

Q¢¢ _ - 4Qx¢ - ° 
x y ¢ - , 

Q:¢ + xy-2Qx¢ = 0, 

Q¢¢ - -2Qx¢ - ° ¢ xy -, 

t x 2 Qt-Qx-xy- QX =0, 

Q ¢ _2Qt - ° t -y ¢-, AQx¢_2Qx¢_ 2y-2Q~-2y2Q: = 0, 

AQ'/><I> + 2y-2Q; - 4xy-4Qx - 2y-2Q! = 0, 

AQx - 2Qx - 4xQi- 4x2y-2Qx - 2y2Q~ = 0, 

AQ¢ - 2y-2Q~ = 0, 

AQt + 2Q~ + 2iQ: + 2ixy-2Qx = 0, AQo = 0, 
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with 

;J. = - y 2oxox + 2xox - y-2 oq,oq, + 0tOt - io t• 

The operator obtained by solving these equations con
tains 14 parameters; 

14 

Q = (2.4) = 2: aiQi' 
i= 1 

where the a; are integration constants and the Q; are 
given by 

Q~ = e±iq, (yo x Of ixy-1 o q,), Q3 = ° q,' 

Q4 = e-it(iy2ox + xO t - ix), Qs = e it(- iy20x + xot ), 

Q6 = at, QJ = eite±iq,(ixyox ± y- 10 ct> + YOt), 

Q 16 = e-ite± i<i>(_ ixyo x Of y-1 o q, + YOt - iy), 

Qu = e±i<i>(Of ixy-1oq,0ct> + YOx0ct», 

Q13 =0ct>0ct>' Q14 =1. 

As these operators are derived by using the trans
formed equation (2.3), the corresponding operators 
Q; for the original equation (2.1) have the form 

Q; =D-1QP· 

It is clear that the set {Q J still satisfy the same com
mutation relations as the set {Q J 6 

We investigate the properties of these operators: 
First we note that Q11' Q12' Q13 are expressed in terms 
of the angular momentum operators Q 1, Q 2' Q 3 as 

Qll = Q1Q3' Q12 = Q2Q3' Q13 = Q3Q3 • 

The remaining operators satisfy the following commu
tation relations: 

[Q1' (2) = 2iQ3' [Q3' Q1) = iQ1' [Q3' Q2) =-iQ2' 

[Q4' Qs] = - 2iQ 0' [Qo, Q4) = iQ4, [Qo, Qs] = - iQs 

[Q1' Qs) =- Q7' [Q2' Qs] = Q s' [Q1,Q4) = Q9' 

[Q2' Q 4] = Q10 

[Q3' Q;] = 0 (i = 0,4,5), [Qo' Qi] = 0 (i = 1,2,3), 

where Qo = - Q6 + t iQ 14' 

From these it is clear that Q 4 and Q s shift the eigen
value i(l + t) of Qo by unit amount. They are found to 
satisfy the relations 

Q4e-il (1+1)ty 1m = - i [(21 + 1)(21 + 3t1(1 + 1 - m) 

(l + 1 + m»)1/2 e-i (1+1)(1+2)ty Z+l m' 

Qs e- il (l+l)tYlm = - i[(2l + 1) (2l- 1)-l(l + m)(l- m)]1/2 

e- i(Z-1)ltY
I
_1 ",' 

Because of the presence of the factors (21 + 1)(2l + 3)-1 
and (2l + 1)(2l- 1)-1 in these coefficients, no linear com
binations of the operators Q4 and Q5 are skew-adjoint 
under the ordinary scalar product 

J. Math. Phys., Vol. 14, No. 11, November 1973 

1528 

f 2" j'" (f,g) = 0 0 j*g sine dedcp. 

To construct operators with the proper adjointness, 
we define the. new operators 

Then the above equations become 

Q"4e-il(Z+1)tYIm :=- i[(l + 1- m)(l + 1 + m)]1/2 

e- i(I+1)(Z+2)tYZ+1 m' 

Qs e- il(l+l)tY zm = - i[(l + m)(l- m)]112 e-i(l-l)ltyl_1m , 

and the following operators are skew-adjoint under the 
scalar product defined above: 

J 23 := - ti(Q"l - 'Q2)' 

J 31 := - HQ"l + 'Q2)' J 12 = Q3 

J 34 := - ~i(Q"4 - Qs)' J 4S = Qo, 

J S3 = - HQ"4 + Q5)' 

J 24 = HQ"7 - Q"s - Q9 - (10)' 

J 2S = - h(Q"7 - Q"s + Q"9 - Q10)' 

J 14 = h(Q"7 + Qs - Q"9 - Q10)' 

J 15 = HQ"7 + Qs + Q9 + (10)' 

These operators satisfy the 0(3, 2) algebra 

whereg11 =g22 =g33 =-g44 =-g55 =-1 

and (Jab)t = - Jab' 

Therefore the set {e- il (Z+l)ty 1m (e, CP)} provides a basis 
for a unitary irreducible representation of 0(3,2). 
Although the dynamical group 0(3,2) of the rigid rotator 
is known,S the time-dependent Schrodinger equation 
was not used to derive U. It was shown in Paper IT that 
all of our generators are the time-independent or time
dependent constants of the motion and, in this respect 
also, the results here differ from the results of previous 
workers. 

3. SYMMETRIC TOP 

The time-dependent Schrodinger equation for the sym
metric top is given by 9 

1 __ 1_ f(1-x 2)o2 _ 2xo +(11 +~) 02 
) 2f1 L x x 13 1 - x2 r 

-~O 0] -iot/W=O, 
1 - x 2 ex. r I (3.1) 

where x = cos{3, and Ci, f3, yare the Euler angles which 
determine the direction of the prinCipal axes with re
spect to the space fixed coordinate axes. The solutions 
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of this equation are expressed in terms of Wigner's 
D functions as 

,T,( t) ~ C .J2j + 1 D j ( ) -E t ... OI,{3,y, = LJ jmn mn OI,/3,ye jn 
jmn 41T 

1 I - I 
E jn =21'j (j + 1) + ~I 1

3 
n2

, 
1 1 3 

wherej=0,t,1,!,"', Iml<j, Inl<j.lO 

(3.2) 

To obtain a linear spectrum, we perform a time dila
tion using the operator defined by 

D = exp{to t In[(J + t!H]}, 

where H is the Hamiltonian, and the operator J + t is 
defined by 

J + t = H1 + 8Il {H + HUl - 13)/IlI3]0~})l/2. 

Under this transformation Eq. (3. 1) is transformed 
into 

[(1_X2)02 - 2xa + (1-x2)-l(a2 + ( 2) 
"" a y 

- 2x(1 - x 2)-la aa y + (ia t )2 - t]J = A"f = 0, (3.3) 

where 

/= ~ C . .J2J+I D j (01 /3 y)e- i (j+l/2)t. 
jmn Jmn 4 mil" 

It is. clear that the operator io t (not the operator D 
iatD-l) has the linear spectrum j + t for the transform
ed eigenstates DlJi Inn' 

Now we determine the operator Q of the form 

Q = Q"o" + Qaaa + Qya y + Qta t + QO, 

which satisfied the equation 

AQ/ = 0, 

where the operator A is defined in Eq. (3.3). 

Expanding (3.5), and choosing the functions 

/tt.!"t,/ at'! yt,/"a.!"y'/ aa' 

for independent functions, we obtain fourteen deter
mining equations: 

- Qf + (1 - x2)Q! = 0, 

(1 -x2)Qf- Q~ +xQ~ = 0, 

(1 - x 2)Qt'1 - Q~ + xQ!x. = 0, 

Q:. - xQ~ + (1 - x2)2Q;< = 0, 

Q~ -xQ:. + (1 -x2)2QJ = 0, 

Q~ - xQ~ - Q~ - 2x(1 - x 2)-1Q" = 0, 
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(3.5) 

Q~ -xQr.. - Q: - 2x(1 _x2)-1Q" = ° 
Q ex _ xQ ex + Q'1 _ xQ '1 + 2xQ" y a a y " 
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+ (1 + 3x 2 )(1 - X 2 )-1Q" = 0, 

(A + t)Q" + 4xQ; + 2(1 - x2tl(1 + x 2)Q'" 

+ 2(1 - x2)Q2 = 0, 

(A + t)Qa + 2(1 - x2)-lQ~ - 2x(1 - x2)-lQ~ = 0, 

(A + t)QY + 2(1 - x2)-lQ~ - 2x(1 - x 2)-1Q g = 0, 

(A + t)Qt - 2Q? = 0, 

(A + t)QO + tQ~ + tx(1 - x 2)-1Q" = 0. 

Solving these equations, we obtain the solution for Q in 
the form 

16 
Q ~ aiQi = (3.4), 

1 

where the a i are the integration constants and Q i are 
defined by 

Q~ = {Qr* =e'i(t£afyJ [t i (11x) 112(1 !x) 

~ 8 

X a" i (1 ~ x) -1/2a a ~ (1 J x) -1/2 0 '1 .±(1J x) 1/2at 

+ ti (1 ~ x) 1/2J ' 

Qg = {Q10}* = eia[(1 - x2)1/2a" - iX(1 - x2)-1/20 a 

+ i(1 - x2)-1/20 '1], 

Qu = {Q12}* = e il[(1-x2)1/2a" - ix(1-x2)-1/2a y 

+ i(1 - x2)-1I2 a J, 

As the a i are arbitrary constants, each Qi satisfies 
the equation (3.5) independently. To obtain the corres
ponding operators of the equation (3.1), we just perform 
the invers~ transformation D-1 on each Q i' Then the 
operators Qi = [)"'lQ;D satisfy12 the equation 

(H - ia t)Q ilJi(OI, /3, y, t) = ° 
where H - ia t and lJi are given in Eq. (3.1). 

Equation (3.6) implies the relation 

(3.6) 

Therefore the Q i are the invariants which we are 
looking for. The action of these operators on the nor
malized eigenfunctions lJit..n defined in (3.2) are given 
by 

(3.7) 
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Q 9 Wi =+[(j+n)(j+n+l)]1/2\}1j l' 10 mn - - m± .n 

QU '\II{,.n= "+ [(j :;:- n)(j ±. n + 1)] 1/2 '\IIk,n:l' 

QI3WL.n = imw;"n' QI4'\11L.n = inw;"n' 

From these results it is clear that the following 
operators shift the eigenvalue j alone by one unit: 

Q.. Q1Q2 = - Q3Q4 

D-l {- 2e it[0 0 - x0 2 + i(1 - x2)0 0 art x t 

- -HI - x2)0 x - ixo t + h ]}D, 

Q.= QSQ6 = - Q7QS 

D-l {- 2e- it [0 a - xa 2 - i{1 - x2)o 0 art x t 

(3.9) 

As these give rise to two term recursion relations 
among the functions Dk, they will be useful for practi
cal purposes. 

To elucidate the group theoretical properties of the 
differential equation (3.1), we introduce the new opera
tors Qi defined by 

Q j = (QlS)I/2Qi(QlS)-1/2. 

This is necessary to obtain skew-adjoint operators. 13 

Then the operators CJ defined by 

q = - Q9' q = 'lI0' q = (1h'2)'ls, 

q = (1!v'2)'l4' C! = (1/h)Q6' ct = (1/v'2)Q2' 

q = (1h'2)'ls, q = (1h'2)'lv C~ = - {1/v'2)Q7' 

q = - (l/h)'l3' q = - Q11' q = Q12' 

q == i(Q13 - "IS)' q = i(- "13 - "IS)' 

q := i("14 + "IS)' q := i(- Q14 + "IS) 

satisfy the SL(4,R) algebra, 

[C i Ck] - ";Ck i' I - VI i 

and following linear combinations of the CJ, 
X~=iC~, k=1,2,3,4, 

Xf == i{q + C~), X~ := q - C" k < 1 

with k, 1 := 1, 2 

Xf = i(q + q), XI,. = Cf. - q, k < 1 

with k, 1 = 3,4 

Xf= i{Cf- q}, X~ = - C~ - Cf, k = 1,2, 

I 3,4, 
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satisfy the commutation relations of SU(2, 2)14 and are 
skew-adjoint under the SU(2} scalar product 

r21f 2rr (" 
(j,g) = . 2rr Io . 0 f*g sin{3d{3dad')l. (3.10) 

Thus it is clear that the set {w;"n (a, (:3, ')I, t) Ij = O,l. 
1, "', - j < m,n < j}, which are the matrix elements of 
the regular representation of SU(2), provide a basis for 
a unitary irreducible representation of SU(2, 2). 

The SU(2, 2) group contains a variety of subgroups. 
Here we investigate the SU(2)xSU(2) subgroup genera
ted by the operators Q; (i = 9,10, ... ,14). For the case 
9! the spherical top (h = 12 = 13), we have the identities 
Q; = Q; (i == 9,10, •.. ,14) because the Qi commute with 
both the dilation operators D and the operator QlS' One. 
can easily check that they also commute with the 
Hamiltonian. Therefore, they comprise the well-known 
SU(2)xSU(2) degeneracy group of the spherical top.IS On 
the other hand, for the case of a symmetric top 
(II == 12 ;c 13 ), we have the identities Q; = Q; only for 
i = 9,10,13, 14, and therefore the Q; commute with the 
Hamiltonian, so that degeneracy group will be SU(2)XU(l). 
The 'lll and 'l12 are no longer time-independent con
stants of the motion. Here we have obtained an important 
result: Under the symmetry breaking II == 12 = 13 -> II = 
12 ;c 13 two of the time-independent constants of the 
motion,Q11 and Q12' of the spherical top turn into the 
time-dependent ones. This is an example of a more 
general phenomenon which will be discussed in detail in 
a future communication. 

So far, we have found that the eigenstates {W!"n 
(a,{:3,y,t)}, j:=O,!,l, •.• , -j<sm, n <sj,which 
comprise the regular representation of SU(2), also form 
the basis for a unitary irreducible representation of 
SU(2,2). However, it is clear that physically the integer 
and half-odd integer states cannot be mixed. If the mix
ing is allowed, the probability amplitude I \}II2 is no 
longer invariant under a rotation of 3600

•
16 Therefore, 

if there exists some observable which causes the mix
ing of integer and half odd integer states, one type of 
state has to be eliminated. If we restrict ourselves to 
the integer or half odd-integer states, then SU(2, 2) is 
no longer the dynamical group in the ordinary sense. In 
this case the dynamical group may be generated by the 
operators {Q .. 'l_, "9' QIO' 'l11' (lI2' <t13, <t14 , ''is}' 
where the operators Q+ and 'l_ are defined by 

where the Q+ are given by (3.9). However, these opera
tors do not close under a finite number of commutation 
operations, that is, they generate an infinite dimensional 
Lie algebra. 

4. CONCLUSION 

Employing the method discussed in our previous 
papers I-III, 2,3 we have derived spectrum generating 
groups of the rigid rotator and the symmetric top with 
minimal ingenuity. All the elements of the groups are 
constants of the motion. Two of the time-independent 
constants of the motion of the spherical top are shown to 
be continuously connected with two of the time-independ
ent constants of the motion of the symmetrical top. 

We note once again that one cannot in general assume 
the form (2.4) or (3.4) for the generator of a Lie group 
leaving invariant a second-order partial differential 
equation. In fact, if one supposes the invariants of Eqs. 
(2.1), (3.1) are of this form, one will fail to obtain the 
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energy shift operators. The reason becomes quite clear 
if we look at the form of these operators, for example, 
the operator Q 4 (not Q 4) of the rigid rotator. It con
tains infinitely many derivatives, and therefore the sim
ple forms (2.4) or (3.4) for Q never give the energy 
shift operators. Therefore, if we want to get the energy 
shift operators by applying our method direct ~ to the 
original equation (2.1) or (3.1), we have to al. ~ in
finitely many derivatives in Q. This appears w create 
a most cumbersome problem. But, as is shown by these 
and other examples, 2,3 the dilation technique can be 
effective in transforming to a problem involving at most 
a finite number of derivatives. Although the method pre
sented here suffers from the severe restriction that one 
needs a knowledge of the spectrum to construct the 
dilation operator, it is still very useful in obtaining 
spectrum generating algebras for Schrodinger equations 
with known spectrum. 

ACKNOWLEDGMENT 

We are pleased to acknowledge the support of this 
research by a grant from the Research Corporation. 

*From the M. S. thesis of S. Kumei. 
IS. Lie, Gesammelte Abhandlungen, edited by F. Engel and P. Heegaard 

(Tuebner, Leipzig, 1922), Bd. III and suppl.; Vorlesungen uber 
Di!!erentialgleichungen, edited by Georg Scheffers (Teubner, Leipzig, 
1891). 

J. Math. Phys., Vol. 1~ No. 11, November 1973 

2R. L. Anderson, S. Kumei, and C. E. Wulfman, Phys. Rev. Lett. 
28, 988 (1972). 

3R. L. Anderson, S. Kumei, and C. E. Wulfman, (a) Rev. Mex. Fis. 
21, 1 (1972); (b) Rev. Mex. Fis. 21, 35 (1972). 

1531 
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For the model (g>Ji >Jiq,N + q,2Mh + 1 in a box the energy is bounded below if M > N. 

1. INTRODUCTION 

The model (gljJ1J;cpN + CP2M)1+1 is considered in a box. 
For M > N the energy is shown to be bounded below. It 
is not known whether the energy is bounded below for 
M = N, except of course for M = N = 1, and it is annoy
ing that the method of the present paper must be modi
fied to accommodate even this case. 

Boundedness below is shown by finding an operator 
bound for e-H• Writing 

H =9 + N rB , 

we note the operator norm inequality 

Ie-HI ~ le-NrB/2e-ile-NTB/21 

(1. 1) 

(1. 2) 

whose proof is given in Sec. 3. e-il is next expanded in 
a Duhamel expansion, where in successive terms of the 
expansion more and more of the Fermion pair creation 
and annihilation terms (terms relevant to renormali
zation) are included in the exponent. This is adapted 
from the method of Ref. 1. Lower bounds for the portion 
of the interaction kept in the exponent, substituting for 
Wick-ordering bounds of the boson case, are obtained 
by use of an approximate dreSSing transformation in 
Sec. 4. 

Next considered, in Sec. 5, are places in the Duhamel 
expansion where a fermion pair annihilation term im
mediately follows a fermion pair creation term in the 
nonexponentiated interaction. In this case the fermion 
operators are "pulled through" to obtain a normal 
ordered expression in the fermion operators in the 
neighboring pair. Terms where the fermions contract 
to a loop require renormalization cancellations. Be it 
noted, no fermion operator is "pulled across" more than 
one exponent. 

To exhibit renormalization cancellations it is neces
sary to ''pull-across'' boson operators from one side of 
the closed fermion loop to the other. This leaves an 
expression involving boson annihilation operators as 
well as CP' s. The annihilation operators are "pulled" to 
the right till they either contract away or hit the right 
exponent e-NrB/ 2 from (1. 1). (In many other calcula
tions, Ref. 2 for example, there is the vacuum available 
to kill annihilation operators.) 

Mter the renormalization cancellations are exhibited 
and the annihilation operators are "pulled across," all 
the interactions not in the exponents involve only boson 
CP's (and not 11'S). It is nonetheless necessary to decom
pose some of the CP's into a's and a*'s and "pull through" 
to contraction or the e-NrBi2 are hit. This is to leave 
expressions that can be dominated by the exponent cP 2M 
terms. These additional "pull-throughs" are defined in 
Sec. 6. 

Mter the succession of fermion "pull-throughs," re
normalization cancellations, and boson "pull-throughs" 
there remains a sum of the type 
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(1. 3) 

The 0 are products of exponentials and interactions in
volving CP's, boson kinetic energy terms, and fermion 
operators; these products are integrated over with res
ect to the t i parameters of the Duhamel expansion. 0 is 
realized as a product of unit blocks. The existence of a 
path space integral with positive measure enables us to 
estimate the product of unit blocks first treating the 
cP as numerical objects and using N r estimates for the 
fermion operators. There remains an expression in CP's 
only, integrated over path space; the switch to the path 
space formalism involves removal of boson kinetic 
energy terms. The integral over path space is then re
placed by an operator expression in the cP, with the 
boson kinetic energy terms reappearing. Interaction 
terms in the cP are dominated by HOB + J: cp21VJ: terms 
in the exponents, creation and annihilation operators by 
e-NrBi2 • 

One uses boundedness below for Hamiltonians of the 
form 

(1. 4) 

where rs < 2M and r is not necessarily integral, and 
similar Hamiltonians, employing Nelson's original 
method to estimate 

(1. 5) 

for Van expression in the cP (Ref. 3). 

The overall estimates in Sec. 8 involve critically the 
"phase space," or estimates for the ti integrals, and 
conditions on a number of parameters, such as the para
meter determining how much of the fermion pair crea
tion term is kept in the exponent. 

The Appendix pursues the passage to boson path space 
with respect to the resultant "time ordering" of the 
fermion variables. It is there noted that in fact the 
operator e-NrB/2e-ile-NrB/2 is an analytic function of g. 

The sequence of operations in the present calculation 
is far from unique, permitting many possible modifica
tions. Application to further problems will naturally 
select the best lines of development. An obvious next 
step is the incorporation of the present methods with 
localization methods to treat boson-fermion models. 
This is presumably necessary to handle the infinite 
volume limit. 

2. THE MODEL 

The (g Iii 1J;cP 2M) model is assembled in a box of 
length 211 with periodiC boundary conditions: 

Copyright © 1973 by the American Institute of Physics 1532 
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We also define a Fourier decomposition for a Wick
ordered power of cp: 

: cpn(x): = B : cpn:ke ikx • (2.2) 
k 

The Hamiltonian is 

H = HOB + HOF + V + A + J : cp2M:. (2.3) 

These quantities are defined along with others that will 
be useful: 

(2.4) 

(2.5) 

H(-R) = '" "(b*b + b' * b / ) OF LJ I""n n n n n' 
In I>R 

(2.6) 

iJCR) = '" .7 (b*b + b'*b / ) OF LJ rn n n n n' ~n = fln - !M~/, (2.7) 
InlSR 

(2.8) 

(2.9) 

V is split into scattering and pair creation-annihilation 
terms: 

V=gJ:I;ilf/cpN: = Vs + VP' 

Vs= 2.; :cpN:i(vb~jbk+vb~;bk)' 
i+j+k =0 

(2.10) 

Here the v dependence on i,j ,k is suppressed. We have 

N 
A= 2.; (~)2(r!)2.; : cp1J-rcp~kr:h(r), 

y=O k 
(2, 11) 

y (1 1) h( r) = B vv n ---
Pl+P2+kl+ .•• +ky=o m=121T2wk m 

x CR wk; + J.L1 + /-12) -1. (2.12) 

United in A is the collection of renormalization terms. 
Properly there is an upper momentum cut-off; with only 
estimates used that are independent of the cut-off. This 
ideal upper cut-off is ignored. By A (R) is meant the por
tion of the renormalization obtained from fermion loop 
contributions containing fermion momenta less than or 
equal R in absolute value. Similarly, 

VCR) = 2.; 'cpN·.{vb'*'b* + vb bq 
P i+j+k=O' " -J -k k J • 

(2. 13) 

Ij I. IkisR 

R will assume values 

(2. 14) 

where 0' is an enor-f,ous constant to be later specified. 
We abbreviate A (Ri by A (i). 

3. THE DUHAMEL EXPANSION 

We begin by proving estimate (1. 2). We desire to 
show 
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We indicate two proofs. The first follows: 

le-Ai2e-Be-A/21:sc <:::=!>e-B:sce+A• (3.2) 

There follows (from x 2 2:: Y 2 ~ X 2:: Y for positive 
operators x and y) 

e-B/2k :s c1l2ke+Al2k (3.3) 
or 

Trotter's product formula then implies 

Alternatively one may use the result that if x and yare 
positive operators,x 2:: y == lnx 2:: Iny. From (3.2) 
follows 

e-B :s ce+A = - B :s Inc + A 
or 

- (A + B) :s Inc == e-(A+B):s c. 

(All estimates needed may be applied to the case where 
only a finite number of boson and fermion modes are 
kept, making domain questions trivial.) We also need 
later the result for positive operators x and y 

0:sc:s1 (3.4) 

Since (1. 2) is to be used we find a Duhamel expansion 
for e-o. We define partitions of H: 

Ai HOF + iJOB + v~i) - D(i) + J: cp2M: 

(D(i) is defined in the next section). We have 

(3.5) 

(3.6) 

B; = Vs + (Vp - V~i) + (A - AW) + (AW + D(i». 
(3.7) 

B i is further split: 

BioI = Vs + (Vp - V~i», 

B;.2 = (A - A(i» +"(A(i)-DW). 

We use the expansion 
- 1 1 

e-H 
= e- A1 

- 10 10 dt 1 dt 2 f1(tl + t2 - 1) 

x (e-A2t2Bl.le-Altl + e-A3t2Bl.2e-Alt,)+ ... 

where 
k-l 

Fk =: 1 + 6 O'i' 
i=l 

F k may also be defined inductively: 

F 1 1, Fk = ll'k-l + F k - 1• 

(3.8) 

(3.9) 

(3.10) 

(3. 11) 

(3. 12) 

B i has been split to facilitate renormalization cancella
tions. 
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4. DRESSING TRANSFORMATION 

An approximate dressing transformation, as first in
troduced in Ref. 4, is now used to enable the Ai of (3.6) 
to be bounded below. Differing from Ref. 4, here only 
the fermion operators are dressed. Though "less accu
rate," this leads to simpler expressions sufficient for 
our purposes, and-all important-involving only cp's. 

We define the dressed operators 0.,0; (which depend 
on i) 

(4.2) 

b:=b~- E :CPN:+ I _ vb;, 
l+j+k =0 J.Lj + ilk 

(4.3) 

Ijl!SR i 

(4.4) 

Expressing Ai in terms of these operators, 

A - H- + HH) + IN(i) - n(;) + J. A-.2M. + p(;) + w(;) i - OB OF 2 r'F • 'f' • 

(4.5) 
with 

p(i)= E Mk(btbk +b;,*b;,) (4.6) 
Ik 1 !SRi 

and w (i) contains terms quadratic in g in terms of the 
undressed operators. w (;) as naturally expressed is 
initially antinormal ordered in the fermion operators. 
When w(i) is normal ordered it splits into two terms: 

(4.7) 

where Q(i) is quadratic in (undressed) fermion operators 
and n(;) contains no fermion operators-a contracted 
fermion loop. Equation (4.7) is illustrated in Figure 1. 
The great thing here (more manifest than a similar ob
servation in Ref. 4) is that 

Q(i) ~ 0 

being a sum of the form E A * A. Of course, 

p(i) ~ 0 

also. A useful expression for Ai follows: 

(4.8) 

(4.9) 

Ai = (p(i) + Q(;)) + (HOB +H~-;) + iN~,ifo) + J: cp2M:. 
(4.10) 

It is important for our purposes that p(O, Q(O, and n(;) 

depend on fermion operators and boson CP's only. 

r 

(~ 
r 

r< r r 
(n.~- <=> 

r 
FIG. 1. Normal ordering after partial dressing, where n. and a.n. stand 
for normal ordered and antinormal ordered, respectively. 
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5. RENORMALIZATION CANCELLATION 

The renormalization cancellation is the heart of the 
calculation. As mentioned before, after the cancellation 
is exhibited some boson operators must be _~ulled,
through" until they contract, or reach the e r B/2 at the 
edges of Eq. (1. 2). 

We decompose V from (2.12) into its creation and 
annihilation terms 

Vp=Vpc+Vpa' (5.1) 

In the nth terms in (3.10) involving t 1,"', tn we define 
time variables so' . ", sn 

So = 0, (5.2) 

Each B I in (3. 10) is associated to some S i' The nth 
term in '(3. 10) is a sum of 2n terms by virtue of the 
sum over G'i' We further subdivide each such term. 
The term B i ,l is split into three terms 

(5.3) 

Bi,s' B i• a and Bi,c' respectively, containing terms from 
V s' V ,a' and V c' The nth term now is decomposed 
into In terms. lithe renormalization cancellation takes 
place for a unit of the following type from the nth term 
of (3. 10): 

(5.4) 

against a unit of the following type 

(5.5) 

from the (n - l)th term of (3.10). Here the sequence 
S ,"', So from the nth term is associated to S n' ••• , 

s;, "', So from the (n - l)st term. See Fig.2. After 
extracting a certain portion of (5.4), s. when integrated 
from sk -1 to sk +1 allows a renormalization cancellation 
between (5.5) and the integrated over portion of (5.4). 

We first use an identity on the first exponential in 
(5.4). We have 

(5.6) 

Substituting (5.6) into (5.4) the second term makes a 
contribution irrelevant to renormalization we call a J 1 

term. The first term replaces (5. 4) by 

(5.7) 

• • • 

< > ( 5.4) 

( 5.5) 

FIG. 2. The renormalization cancellation. 
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We now split (5. 7) into two terms, the first, 

(5.8) 

contains the terms in the B where all four fermion 
momenta are greater in absolute value than R F ; the 

k+1 
other terms we denote by J 2 • In (5.8) we p'ull all the 

-I\.F tk+l 
fermion operators across the exponent e k until 
we have a normal ordered expression in these four 
fermion operators as indicated in Fig. 3. 

See Ref. 5 for a definition of the ''push-pull'' operations. 
The first term on the right side of Fig. 3 is the portion 
of (5.4) involved in the renormalization cancellations: 

I; 
P= PI +P2 

I p2 1, I P II > R F
k
+ 1 

(5.9) 

To exhibit the renormalization it now appears neces
sary to push the boson operators from the : ¢N : _ P 

term in (5.9) across the exponent. This is done one 
boson operator at a time. We leave some annihilation 
operators to the right side of the exponent, pushing 
across the right mixture of a*s and a's so only ¢'s 
arrive across the exponent. The term where all ¢'s 
cross the exponent is relevant to renormalizations, 
terms in the unpushed annihilation operators or involv
ing contractions with the exponent are not. As soon as a 
contraction occurs or an annihilation term appears we 
stop pulling boson operators across the exponent. We 
now go into details. 

We define 

noting 

¢P(tk+1) = e-wptk +1 ¢P' ¢p(O) = ¢p - (1 - e-2wptk+l)ap. 

(5. 11) 
We also define A F : 

k 

We consider the heart of (5.9): 

(5. 13) 

Pulling across the ¢k.(S), the term where all ¢k.(S) 
• • 

come across the exponent yields 

(5. 14) 

<> 
(5.8) 

FIG. 3. Graphical illustration of fermion pull-throughs. 
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The terms in unpushed annihilation operators are as 
follows: 

-AF tk+l - 2w k tk+l 
x e k : ¢k

s 
+1 " ¢k

N
-

1 
: (1 - eN) a kN 

(5.15) 
which we refer to as J 5 , and terms subtracting from 
(5.15) contractions between the pulled across and un
pulled across terms, explicitly 

N-2 

- I; I; 
sol kl+"+kNo-p 

min (s,N-s-l) 

I; 
lo 1 

N s N-s-1 
: ¢ : pl!<z)( I ) 

I ( ) X n --.!. _1_ 1) 
k - k 

mol 27T 2Wk m' s+m 
m 

(5.16) 

which we refer to as J 6 • The terms in contractions 
with the exponent are 

-A s' 
X e Fk • ¢ .. ¢ . 

• kS+2 k N ' (5.17) 

which we call J 7' and terms in contractions analagous to 
(5. 16) we call J 8 • Thus 

(5.13) = (5.14) +J5 +J6 +J7 +Js' 

Equation (5. 14) replaced in (5.9) yields 

We now integrate sk from Sk-1 to sk+1 in (5.19) and 
obtain 

E 
P=PI +P2 

IP2I,IP11>RFk+1 

(5.18) 

( 
-(~Wk.+1'1+1'2)(tk+tk+I» N 

X 1 - e' : ¢ : P : ¢k ••• ¢ k : 
I N 

(5.20) 

The first term in parentheses in (5. 20) against the term 
in (5. 5) is the renormalization cancellation. The second 
term in the parentheses in (5. 20) yields a term we call 
J 9 • 

Now finally we take the Boson annihilation operators 
in J 5 and J 6 [(5.15) and (5. 16)] and push them to the 
right until they either hit e-NrBh or contract out. At 
this stage the renormalization cancellation is manifest, 
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and all terms sandwiched between exponentials from the 
Duhamel expansion involve only boson </>'s and fermion 
operators. However, as performed in the next section 
some of the expressions in boson </>'s must be dismem
bered before expressions are obtained submissive to 
domination by the HOB + : </>2M : in the exponents. 

6. MORE BOSON PULL-THROUGHS 

We begin with the contribution from the first term in 
parentheses in (5.20), omitting the exponent at the right: 

~ 
p= P I +Pz 

I pl.lpl> RF 
2 1 k+1 

We normal order this expression to obtain 

~ 
p=p I +P2 

IP2I,IPII>RFk+1 

1 (1 1 ) x n ---
m=121T2wk • 

m 

(6. 1) 

(6.2) 

This is in form to cancel with the renormalization 
counterterms except that the energy denominators in
clude all the boson energies instead of just the contract
ed boson energies. We write (6.2) as the sum of two 
terms: 

K= 

1 (1 1) (I )-1 x n --- . E Wk; +j.!1 +JJ2 (6.3) 
m= 1 21T 2Wk .=1 

m 

and 

MJ= 

N )-1 (I )-lJ X ~(~ Wk. + JJl + JJ2 - ~ Wk. + JJ1 + JJ2 • 
~ .= 1 • .=1 I 

(6.4) 
In MJ we decompose </>k , ••• '</>k into creation and 

1+1 N 
annihilation operators, and then push the annihilation 
operators to the right until contraction or they hit 
e -NT Bh, and creation operators to the left until they con
tract or hit the left e -NT B/2. This pushing of creation 
operators to the left leads to more complicated esti
mates than of the annihilation operators to the right, 
since the number of terms to the left increases with 
order in the Duhamel expansion. Similarly </>k

l 
' •• " </>kN 

from the second term in parentheses in (5.20), </>k " •• , 
<Pk in (5.15), </>k , ••• ,<Pk in (5.16), </>k ,"', </>k: in 

s l+l S 1 
(5 17) and </>k , ••• '</>k from J 8 are decomposed into 
.., l +1 s 
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creation and annihilation operators that are pushed to 
the left and right, respectively. 

At the end of the "pull acrosse.s" above, preliminary 
algebra is now concluded and the stage is set to begin 
making estimates. 

It is to be noted that it is possible to decompose still 
other </>' s in the above manner and still control later 
estimates. In a sense we have decomposed a minimal 
number of <p's. 

7. UNIT BLOCK ESTIMATES 

A. Classification of blocks 

Having performed a Duhamel expansion, pulled some 
fermion operators across a single exponent, pulled some 
boson operators across a single exponent, integrated 
over some of the time variables to reveal the renorma
lization cancellation, pulled some boson annihilation 
operators to the right, and finally pulled some more 
boson annihilation operators to the right and creation 
operators to the left, we are left with a sum of products 
of operators to be integrated over t variables. The 
operator products will be broken into products of unit 
blocks, and the operator norm of the product estimated 
as the product of the operator norms of the unit blocks, 
t-dependent operator norms. These product estimates 
will then be integrated over the t. The estimate for the 
sum of such products will be taken to be merely the sum 
of the norms for individual terms, by the triangle in
equality; the sum includes sums over momenta of pulled
across boson operators. We proceed to consider the 
unit blocks. 

Each product of unit blocks involves fermion opera
tors, boson </>'s, and boson kinetic energy terms in the 
exponentials. A matrix element of such a product can 
be realized as an integral over boson path space, with 
an expression over path space depending only on </>'s; 
the boson kinetic energies removed from the exponents. 
This set-up is viewed as an expression in fermion 
operators "fibered" over path space. The operator 
norm is estimated over each fiber treating the <p as 
numerical quantities, the integral over path space then 
considered. This integral over path space is then re
placed by an operator expression in boson </> operators 
and boson kinetic energies. A sample inequality derived 
by this method is the following: 

(7.1) 

It is possible that most if not all of these estimates are 
derivable without path space methods. Some of our unit 
blocks will be disconnected terms united by some sum, 
as the sum on j above, which can be estimated as a unit. 
The path space method will enable an expression like 

~ CY..¢.J¢. 
. J J 1 

(7.2) 
J 

to be estimated by 

(~CY.j 1 ¢j 12)1/2IJI(y CY. j 1 ¢j 12) 1/2, (7.3) 
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where we will think of an expression like 

~ (aj ¢) ~ (¢j) (7.4) 
J 

as a (disconnected) unit block. 

In fact, as stated before we imagine working with an 
upper cutoff to the fermion momenta, and obtaining 
estimates independent of this upper cutoff. With such 
an upper cutoff the fermion operators are finite mat
rices, and the fibering of fermion space over path space 
presents no analytic complexities. 

Elements of the unit blocks will be subscripted by 
four possible subscripts T l' T 2' T 3' and T 4' 

T 1 assumes the value n if the term arises from 
either An or Bn in the Duhamel expansion. 

T 2 contains two sets of momenta representing con
tractions with pulled-through creation and annihilation 

operators. Thus (V)(T2 ) if T2 = {(kVk2)' (k 3 ,k 4)} is 

(.J 2Wk a~ ,~ a~ oJ 2Wk a k ,J 2wk a k , V), 
II 223344 

(7.5) 

where successive commas indicate successive commuta
tors. We define IT 21 to be the total number of momenta 
in the two subsets of T 2' 

T 3 contains two sets of momenta representing crea
tion and annihilation operators originating in the term, 
-that have been pulled through. Thus 

+ ~ (c ijl _1_ J 2wk. "2wk ) T" (7.6) 
i.i.1 ..f27i J I 3 

with T3 = {( ), (kpk j ,kl)} and T3 = {(- k i ), (k j ,k I)} 
if ¢k- ,ak _, and akl are all pulled across. As with T2 we 

• J 

define IT3 I, and IT 31 a and IT 3 1 c in an obvious fashion, 
with IT31 = IT la + ITlc' 

T 4 labels momenta of creation and annihilation 
operators that have reached the outside of the Duhamel 
expansion. 

We proceed to enumerate the types of unit blocks. 

(1) UlL' T4 and U1R• T4 • If T 4 = {k v ... ,k.} then 

(7.7) 

and similarly for U lL. T4 • 

(2) U2a.TI'T2 and U 2c' T I'T 2 ' 

-AT +It( (T t )(T2 ) -AT t' 
U2a.TI'T2 = e I Vpa - Vpa ) e I (7.8) 

and Similarly for U 2 T T • 
c, l' 2 

(7.9) 

(4) U 4 T T ,arisingfromJ1• 
• P 2 

(7.10) 
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(5) U 5a T T and U 5c T T , arising from J 2 • 
'P2 '1'2 

-ATt (T) (T 2 )-AT t' 
U5c.TI.T2 = e I (Vpc - Vpc 1 )J

2 
e l' (7.11) 

where the subscript J 2 indicates limits on the fermion 
momenta stated in the definition of J 2 • 

(6) U6 a T T and U 6c T T , ariSing from J 3 • 
• l' 2 ' l' 2 

U -6 c,TI'T2 -
p= P I +P2 

IP2I,IPII>RTI+I 

(7. 12) 

with T = Si-1 - Sk-1' This is a disconnected unit block. 

(7) U7 T T T ' , arising from J 4 • 
• It 2' 2 

E 
PI= P2 +PS+P4 

IPII.IP41.IPs-PII>RTI+I 

(7.13) 

with Ilc = /-IPS-P l ' T = S._I - Sk-I' T = Sj - sz, T = Sj
Sk-1' 

(8) Us T T T ariSing from J 5 • 
• P 2' 3 

If T3 ={( ),(kl' ... ,ks,kN,)},forexample, 

where 

P I +P 2 =P 

k 5 + I + .. + k N -I = - k N- k I' • - k s - P 

IP l l.IP21>RT
l
+I 

-A T +2 t i /2 N (T 2 ) 
x vve I I (: ¢ : p) 

T=Si-I-Si -1' 
I 2 

(7. 14) 

(7. 15) 

(9)-(15) arise from J 6 ,J7 , Js,Jg,MJ, (6. 3) - (A - A (i), 

and contractions with the exponent, respectively. 

(16) U I6 ' T2 arising from VS' 

(7. 16) 

the only term depending on V s' 

B. Numerical constants and the generic estimate 

The numerical estimates of our calculation involve 
several constants: a, (3, 'Y, E, li, T, and T! • (3 is required 
to satisfy 
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N/2M < {3 < t (7. 17) 
and 

1 1/4M < (3. (7.18) 2" 

E must satisfy 

{2 N + 4)E < i - {3. (7. 19) 

We pick 

T' :::: 1 (7.20) 

and choose y and T satisfying 

y =: t + iT + E > 1. (7.21) 

o is required to satisfy 

0< €/2a. (7.22) 

(3, y, E, T, and T' can be picked satisfying (7.17)-(7.21) and 
and fixed; a will have to be picked suitably large later 
and 0 then picked satisfying (7.22). 

We estimate unit block (1) first, a unique type block; 
referring to (7.7), 

s 
IU1 R,T I :5c2 s / 2 n (Wk.)l/2(S!)l/2. 

4 .=1' 
(7.23) 

We shall use c to denote uninteresting constants. 

The desired estimates for all the remaining blocks 
assume the following general form [if T 3 =: {(k l' .•• ,k s) 
(ks+l,· .. ,k.J}]: 

E (ii +-)1!U I :5 c(T )~(T I Tsl«C1r
1 1. i. 

k " k '-1 W T[.Ta·Ts 1 1 t a t'" ]. • .,.. ,,- k· 

• (7.24) 
with c 1 and c constants, I T 3 I =: r. Here we have consi
dered for SimpliCity a block depending on two t·s; for a 
block such as (7) depending on four t·s an analogous for
mula holds. a and b satisfy 

a + b :5 1 - (2N + 3)E. (7.25) 

The blocks are chosen so that the product of neighboring 
estimates involving the same t yields a total exponent 

b + a' :5 1 - 0. (7.26) 

[ I U A I :5 ¢(l/t a)(l/t' b), I U 1:5 ¢/(1/t' a ') (lit IIb / ), U A 

and U B successive blocks.fEquations (7.24), (7. 25), and 
(7.26) are central, organizing in spirit the entire set of 
estimates in this section, and enabling the overall esti
mates of the next section. We now discuss the verifica
tion of (7. 24) for a selected number of the unit blocks, 
introducing methods applicable to all the cases. 

C. Estimates for U2 and U16 in fermion variables 
The calculations of this subsection apply virtually un

changed to unit blocks (5) and (6) and parts of (4) and 
(15), In basic essentials they apply to all the blocks 
except U l' For Simplicity we take T 2 to be the empty 
set. We first consider U 2' It is sufficient to look at the 
expression 

-AT +I t -AT t' 
e 1 Vpc e 1 

AT +I t ( N'* *) -AT t' = e 1 .. 2;: ¢ : ivb_j b_ k • e 1. 

HJ+k=O 
(7.27) 

We break the sum into four parts: 
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(a) \j I < Ikl, Ik I > (T 1 + 1)«, 

(b) \j I < Ikl, Ikl:5 (T 1 + 1)«, 
(7.28) 

(c) Ij 12: Ik I, \j I > (T 1 + 1)«, 

(d) Ij 12: Ikl, Ij I s (T 1 + 1)«. 

It is clearly sufficient to consider (a) and (b) only. Case 
(a) is the most interesting. We define 

- \J.Li 11·= 
• 0 

if Iii> (T 1 + 1)« 

if Iii S (T l + 1)« 

and study the contribution of (a) to (7.27). 

-A t N'* * -AT t' 
IT a = e T I + IE: ¢ : i vb _j b _ k e 1 

i+j+k=O 
Ik I> Ijl 

Ik 1>(T1 +1)« 

[ ( 
1 (-(T1+l» '" = exp - ATj+1 - 2"HOF )t] I...J 

N ,* * (1t+~k)tI2 
x: ¢ :ivb_j bIle J 

[ 
1 (-(T1+l»] -AT t' 

X exp - ZHOF tel • 

(7.29) 

(7.30) 

We have used the fact that H~';?1+1» commutes with 
AT +l;the fact that HOF does not commute with AT +1 

is irhat forces us to consider (a) and (b) separately. 

We view na as an operator in fermion variables with 
numerical valued boson operators merely functions 
in path space (removing HOB) and take the norm as a 
fermion operator, using an NT estimate: 

X e -(~j~k)t: ¢N: i: ¢N:_i(2 exp[ - I (I : ¢2M : )dt' 

1 (7.31) 
s c -:;-;- (Int)1/2 exp[- I{I: ¢2M :)dt] 

tJJ 2 

X ~~ e-1!2Ii It: ¢N: i: ¢N: -i ~1/2 
X exp[- I <f: ¢2M: )dt']. 

This is a positive function on path space. 

The NT estimate is as follows: 

le-AtJI = le-At/A. _1_. /Ho' _1_. JI 
/A /Ho 

s le- At n\'1-1 '/HoI'j_l_'JI 
/A ~ 

s~'1'1-1_'Jj 
rt ~ 

(7.32) 

provided A 2: H o' In this derivation the fact that the 
fermion variables in the exponential are "time ordered" 
has been suppressed. See the Appendix for a treatment 
of this point. 

Turning to ITb , 

E 
i+j+k=O 

Ik 1>1)1 
Ik I,;:; (T1+1)« 

(7.33) 
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In this case we directly use an NT estimate: 

ITIblp.s.::s c t~2 [In(T I + 1)]1/2 exp[- j(j: cp2 :)dt] 

x exp[- j(j: cp2M :)dt']. (7.34) 

Before performing the boson estimates we turn to U 16' 

We consider 

-AT +It -AT +I t ' -AT It N * -AT t' 
e 1 V s e 1 = e 1+ 6: cp : i b _j b k ve I. 

(7.35) 
(The antiparticle terms are of course identical.) We 
break the sum over momenta into a number of regions, 
where it is sufficient to consider the following cases: 

(a) Ij I ? I k I, 
(b) Ijl?lkl, 

(c) 1i1?lkl, 

Ij l::s (T1 + 1)"', 

Ikl ::s (T 1 + 1)'" < Ii I, 
Ikl> (T 1 + 1)"'. 

We note the operator inequality 

In case (a) we proceed as follows: 

Ie-At V:e-At'l p •s . 

(7.36) 

(7.37) 

::s C exp[- j(j: cp2M:)dt]/_I_ va_l / 
t1l2 -ot'o H1I2 -0 s N0 

OF F 
X exp[- j(j:cp2M:)dl'] 

::s C exp[-j<J:cp2M:)dt]/_1_ V "'/ 
/1/2-ot'o N1I2 s 

Fp 

X exp[ - j (j: cp2M: )dt'], (7.38) 

with P = 1 - 20. SO 

IXVI I ::s C exp[-j(j:cp2M:)dt] 
a p.s. t 1l2 - 6 t'6 

xl 6 :¢N:;:cpN:)1/2 
Ii 1,;2(T I +I)'" \ 

X exp[- j(j:cp2M:)dt ' ] ·T!f20. (7.39) 

In case (b) we proceed similarly but pull 
[ 

(-(T +1)t] -1I·t exp - H OF I across V to attach e J to the kernel 
to obtain 

IXV1blp s::s 1 C exp[-j(j:cp2M:)dt] 
.• 112 - ot'o 

1 
(1/2 

X y:cpN:i:cpN:_ie-liltI4\ 

X exp[ - j (j: ¢2M: )dt'] n"'''. (7.40) 

In case (c) we also pull exp(- H~~(TI+l»t) across V 
this time attaching e-(lIrlli )t to the kernel. A simple 
estimate of the kernal gives 

I XV1c Ip s::s 1 C 11 exp[-j(j:cp2M:)dt] .. t 1 4 t' 4 

x 16 : cpN : . : cpN : _ .( __ 1_ + e-1I41 i I t)( 1/2 
i "Iil+l \ 

X exp[- j(j:cp2M:)dt']. (7.41) 
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Here the NT estimate used attaches 1/../ HOF on the 
right side of V where H 0 F is multiplied by (t + t') in 
the exponent. 

D. Estimates in boson variables 
Looking at (7.32), (7. 34), (7.39), (7.40), and (7.41) we 

see that we are left with the task of performing an esti
mate in path space for an expression of the form 

exp[- j(j:C:P2M:)dt]~y Q'i :CPN:i:CPN:_i~1I2 

xexp[- j(j:C:P2M:)dt ' ]. (7.42) 

At this stage we trade in path space for Foch space and 
consider 

exp[-(HOB + j:C:P2M:)t]1Y Q'i :C:PN:i:C:P!;:~1/2 

xexp[-(HOB + j: cp2M:)t']. (7.43) 

We pick d such that 

(7.44) 

and normal order the expression: 

(7.45) 

By a trivial argument it is sufficient to consider expres
sions like 

G = exp[-(HOB + j: c:p2M:)t] l/yi3 i : C:P1C:P~i: / ~1/2 

xexp[-(.HoB + j: c:p2M :)t' ] (7.46) 

with 1 ::s s ::s N. We assume that as with IIa we want the 
boson expression to be dominated entirely by the right 
side exponent. Equation (7.26) dictates in each case 
what ratio of each exponent is to be used. We seek the 
following estimate 

IGI::s(s~PIi3il/t'B)C. (7.47) 

We define (3 = sup; I i3 i I and observe that (7.47) would be 
implied by 

1116 i3 i : CP1C:P~i : If 112 [(HOB + j: c:p2M : + d)B]-1 ::s c{3, 
, (7.48) 

in turn implied by 

[(HOB + j: c:p2M: +d)B]-11I yyi : C:Pf¢~i :I~ 
x [(.HOB + j: cp2M : + d)B]-1::s c 

(7.49) 
if I Y i I ::s 1. Putting Y i = 1 does not essentially change 
any of the succeeding estimates. We now use (3.4) to 
see that (7.49) is implied by 

HOB + j: c:p2M: +d-cl/y:¢1c:p~i:lfI/2B? 0 

(for c small enough). 

(7.50) 

This last inequality we show by E. Nelson'S method of 
Ref. 3. To an upper cutoff L we associate 

VL=j: C:P1M:- c{lj: C:Pls :I}1I2 B , 

RL = j :cp2M.: - c{1 f: c:p2s: 1}1I2B- VL• 

(7.51) 

(7.52) 
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It is then required to find a suitable estimate for a con
stant e L with 

(7.53) 

and an estimate for 

(7.54) 

We unwick: 
S 

: cp~:: = 6 wy cp2r, 
y=o 

(7.55) 

(7.56) 

( 

S )1/28 
I J: cp2s : 11/ 28 :s r~o I W T I J cf>2T 

s 
:s (s + 1)1/28 6 Iw r I1/26(j ¢2T)1/28 

r= 0 

s 

:s e 6 I w T11/26 J cpr/B. 
T=O 

(7.57) 

(Yes, w
T 

depends on L.) r/{3 is less than 2M, the crucial 
fact. 

To study R L we look at 

AL = II: cp~:: 11/ 26 - I J: cp2s: 11/28. 

We use the inequality for X,Y ~ 0, 1 < (}' < 2 

I x a - y a I :s I x - y I «(}' X a-I + 0' y a -1 ) 

:s e I X - Y I (1 + X 2 + Y 2) 

to get 

IALI :seIJ: 11S :- J: cp2s:l(1 +(J: 11s :)2 

+(J:¢2s:)2). 

(7.58) 

(7.59) 

(7.60) 

From (7.57) and (7.60), (7.50) follows by direct calcula
tion in imitation of Ref. 3. 

8. OVERALL NUMERICAL ESTIMATES 

The "phase space" volume integral we use is 

By (7.26) the r(O'i) in the numerator will satisfy 

r(a i) :s r(6). (8.2) 

Each pulled-across creation or annihilation operator 
borrows 1/ wi from the first exponent it can by 

(8.3) 

Equation (7.25) allows for 2 N borrowings of t< by N 
operators passing to the left and N passing to the right. 
Equation (7.21), the estimate for unit block (1), and the 
INC;; associated to each, a, a* in cp, assure each pulled
across operator finally contracted or reaching e-NT8/2 
has associated to it a factor l/w~. The integral in (8.1) 
is then estimated by 

(8.4) 
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In (7. 24) we cancel (T 1) E by a power, leaving an estimate 

k 6k (.~l w_
1 )Y I UTI'T2,T31:s e 1~31acl la ~b' 

I'··' T ,- ki TIt t 

b + a' :s 1 - 6, 

a + b :s 1 - 2«: 

(8.5) 

(8.6). 

(8.7) 

with each pulled-across operator having 1/ wr; associat
ed to it. We pick e ~ 1. 

We rewrite the product 

1 
-- e • e 1···el 
(n!)2< n n-

as 

with 

f = e _1 ___ -=1,--:-_ 
s s sds (s + 1)<1&+1 

1 
n dn ' 

Note that this clever definition of f s depends on n. 

(8.8) 

(8.9) 

(8. 10) 

We proceed to the overall estimate; aSSOCiating terms 
in B i' S second order in g with fermion contracted loops 
as we have. We have 

le-HI:s le-NTBhe-iI e-NT6i2 1:s fj En' 
n=O 

(8. 11) 

where nonexponentiated terms in En (before pulling 
across operations) are of order gn. We write 

E :sG 'M' 1 
n n n (n/2 !)<' 

(8. 12) 

where G n is the number of types of decompositions into 
unit blocks, before the onset of boson annihilation opera
tor pull-throughs or "more boson pull-throughs" (Sec. 6), 
grouping together terms in a given unit block having the 
same values of I T31 a and I T3 1c' Gn is easily overesti
mated by 

(8. 13) 

(3 corresponding to V s' Va' or Vc; 4 corresponding to 
not pulling across fermions, contracting to a loop, a 
Single contraction, or pulled-across fermions with no 
contractions; 16 N overestimates types of contributions 
from closed fermion loops; N2 overestimates values of 
I T31 a and I T3Ic)' (n/2!)€ in (8.12) comes from inte
grating (8.5) by (8. 1), using decomposition (8.8)-(8.10), 
and recalling there are terms in which as many as ! the 
original t variables are integrated out to exhibit the re
normalization cancellation. 

Looking at the terms in En where 

1T3Ia=ri:SN, 

1T31c =l.:sN 
(8. 14) 

in the ith unit block, i = 1, ... , n. M n is estimated using 
(8. 1), (8. 5), and (8.8)-(8. 10) by 

n 

Mn:S sup (C N +1)n n (Ji(3Ni i} Ti(3iN(n-i)) l i), 
{Ti,li} i=1 (8.15) 

1 1 
n dn ' 

(8. 16) 
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The terms (3Niri (3N{n- i»li generously count the 
number of terms generated by boson pull-throughs, or 
include the (s 1)1/2 from (7.23). The contracted over 
boson terms have been summed over, as have boson 
operators reaching e-NrB/2. In (B. 16) split up (B. 9)
(8.10) has been used, applied to unit block terms present 
before boson annihilation pull-throughs or .. more boson 
pull-throughs." We get 

(B. 17) 

(8. 1B) 

:x 
= sup exp[ln(x - i) - (f./N) ~ (l/j) lnj). (B. 19) 

:x >i j=1 

Estimating the sum in (B. 19) by an integral, we have 

h(i) '2" sup exp[ln(x - i) - (E/N)«lnx)2 - (In(i »2)] 
x>i 

;S sup exp[ln(x - i) - (2f./N)(lni)(lnx - lni)]. 
x>i 

Differentiating to obtain the maximum: 

_l __ ~lnil=o, 
x - i N x 

. (N lniJ 
X-Z= EX)' 

Thus h{i) :s C" for some constant C". Picking Q' to 
satisfy 

{B. 20) 

(8.21) 

(B. 22) 

Q' ::= 1/e l' (8. 23) 

we get 

I e-H l:s f) {c)n 1 
n=O (n/2 !)< 

APPENDIX: TIME ORDERING IN FERMION 
VARIABLES 

We consider an exponential of the type 

-t(HOF+HoB +v+ v ++ V_) e , 

(B. 24) 

(AI) 

where (with modification of previous notation) V is a 
polynomial in cp variables, V + and V_ are terms in cp 
variables, and fermion creation and annihilation terms, 
respectively. The fermion momenta in V+ and V_ are 
cutoff at i CX • Using the Trotter product formula equates 
(AI) with 

lim (e- t1n IIoBe -tin (HOF +V +V + +V _»n • (A2) 
n-oo 

Passage to boson path space thus yields 
n 

F=limTD 
n-oo j=l 

where the arguments of the V are the time variables in 
the cp, and the T indicates that the product is written 
with j increasing to the left (time ordered). Since HkP 
commutes with V + and V_, we have 

-.H(-;) -(t-.)H(-;) 
F = e OF Ge of (M) 
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for any O:s s :s t, and 

(AS) 

providedHbY/2 + V + V+ + V_ ::=p{cp) as an operator in 
fermion variables, as we assume. 

We consider 

G = !~~ Tj~J exp[-t/n(vGf) + v+(1f) 

+ v_(Jtf)+ HOi))] f. (A6) 

If the V + and V_ all commuted so (A6) could be written 
as 

exp[- fot dt(HOi) + V{t) + V+{t) + V_{t))]. 

then it would follow 

(A7) 

I {H(;»cxGI :s (e/t CX)exp'-l
t 

dtP{t)] (A8) OF p.s. L 0 

if O:s Q' :s i, as we have used in the paper in the argu
ment preceding (7. 33). Relation (AS) is correct but 
presumably (AB) is not, so we proceed to replace it by 
an alternate estimate. 

We write V = VI + V 2 where VIis quadratic in g and 
V2 is independent of g. We also write W = V+ + V_ + VI' 
G is expandable in a Duhamel expansion 

~ It 1'3 1'2 G = 0 (- l)n ds' .. ds ds 
n =0 0 n 0 2 0 1 

x exp[- f.: dt(HOi) + V 2(t»]W{sn) 

... W{sl)exp[- fo'l dt(HOi) + V 2(t»]. (A9) 

Using estimates of the type of Sec. 7 an estimate for 
(A9) may be obtained replacing (AS) and (AB) with esti
mates ade.9uate for the present calculation, and showing 
e-NTBI2e-He-Nrsi2 is in fact analytic ing. Thus the cal
culation could have been performed from the beginning 
with all terms in g in the B, the unexponentiated terms 
in the Duhamel expansion. This would have made the 
calculation somewhat simpler; but using cruder esti
mates, less useful possibly f.or later calculations. 

We intend to use a better estimate for G than that 
obtained from (A9). In fact, what we require in addition 
to (AS) is a replacement for the doubtful inequality (AB). 
In virtue of (A4) the present calculation requires only 
an estimate for this, I (Hbi)cxGl p • s .• We use the Duha
mel expansion: 

00 t 
{HOi)cxG = {Hbi)cx n~O (- l)n fo dS n 

... fo'2 ds 1 [exp - f.: dt{Hbi) + V 2(t»] v_(sn) 

.•• VJs 1)( exp[-- fo' I dt (Hoi) + V 2(t»] 

- fo'l ds O exp[- 1.:1 
dt(HOif + V 2{t»] V+{SO) 

x exp[ - fo'O dt (Hbi) + V{t) + V Jt) + V_ (t)]). (AlO) 

It is easiest to find an estimate for 
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I (H(i»CX(H + V )8e -<HoB +H~iJ.+v+v++v_)t I = E 
OF OB 2 v.p.S. cx,8' 

(All) 
where O! + i3 < t and the v.p.s; norm is the total opera
tor norm obtained by first passing to path space, taking 
the fermion norm, and then calculating the boson norm. 
This norm may be larger than the operator norm of 

(i) 
(H~t;')CX(HOB + V2)8e-<HoB+HoF+V+V ++ v_)t 

since we have integrated over fermion norms rather 
than integrating and then taking norms. Using the 
methods of Sec. 7 and (AIO) we find 

(A12) 

with Il fixed but arbitrarily small. Replacing (A8) by 
(A12) does not substantially modify the present calcula-
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tion. It is an interesting question as to whether there is 
a better estimate for (All) than (A12), such as would be 
implied by (A8). 
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The motion and expansion of single band wavepackets in a three-dimensioanl periodic potential are 
studied. Explicit expressions are derived for the expectation values < x( t) > and < x2(t) > of an 
arbitrary combination of time-dependent Bloch functions belonging to a given nondegenerate band. 
Special attention is paid to spatial expansion of a Wannier function. It is shown that in this particular 
case <X2(t» = <X2(O» + <V2> t 2

, where <V2> is the average value of [Vkw(k)j2. This apparent 
generalization of the well known analogy between V kW(k) and velocity does not hold in the more 
general case, where we get an additional term which is linear in time. The expressions derived for 
< x2(t) > are an important element in the calculation of the diffusion coefficient when the 
intermediate state of the jumping process is a wavepacket. 

1. INTRODUCTION 

The propagation of wavepackets in the presence of poten
tial barriers has been studied extensively. This beha
vior has been used to exemplify quantum effects, such as 
reflection and tunneling. The propagation of a Gaussian 
wave packet in the presence of a parabolic potential 
barrier was recently studied in great detail by J. H. 
Weiner and Y. Partom,l in an effort to incorporate the 
above-mentioned quantum effects in chemical and other 
rate theories. However, the application of their results 
to diffusion of interstitials in solids is limited by the 
fact that only one single potential barrier is conSidered, 
while the diffusing particle is subject to a periodic po
tential, whenever the accommodation of the lattice to 
the migrating particle is negligible. A Simple one
dimensional calculation shows 2 that under certain con
ditions jumps to nonnearest neighbor sites make a con
tribution which, regarding the diffusion process, cannot 
be neglected. Under these circumstances the periodicity 
of the potential must be taken into account. 

The aim of the present paper is to study the features 
of wavepacket propagation which are relevant to diffu
sion in a general, three-dimensional periodic potential. 
The motion of the center of such wavepackets is usually 
described with the help of classicallike equations of 
motion with constant velocity. On the basis of the fact 
that the expectation value of the operator i in a pure 
Bloch state with quasimomentum ko is proportional to 
the k-space energy gradient Vkw(k) evaluated at ko,one 
concludes that V kW (k) plays the role of the classical 
velocity. 3 This interpretation is also supported by appro
ximate calculations with wavepackets. 4 In this work we 
present an alternative derivation of the equivalence be
tween velocity and V kw(k) by calculating the motion of 
the center of the wavepacket directly. We further cal
culate the time evolution of the mean square displace
ment (x2(t) of the wavepacket and are able to show that 
it consists of two time dependent terms: one quadratic 
in time and the other linear in time. The former can be 
considered as a generalization of the analogy between 
V kW (k) and velocity. 

In Sec. 2 we investigate the expansion of a Wannier 
function. An explicit expression for the time-dependent 
expectation value of the operator x2 is obtained. This 
expreSSion is generalized in Sec. 3 to arbitrary wave
packets, and a simple expression for their time
dependent mean pOSition is derived. The calculations 
are carried out in the (k, q) representation,5 which 
appears to be the natural way of handling time-depen-
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dent problems with periodic potentials. 

2. EXPANSION OF A WANNIER FUNCTION 

The Wannier function a(x) is defined by the following 
equation3 : 

a(x) = [V/(21T)3]l/2 J <Pk(k)dk, (2.1) 

where <Pk(X) is a Bloch eigenfunction and V the unit cell 
volume. Throughout this paper, the quasimomentum inte
grations are always performed over the first Brillouin 
Zone. In (2.1) the band index is omitted since we shall 
be dealing with Bloch functions belonging to one band 
only, which we assume to be nondegenerate. 

Consider a wavepacket l/I(x, t) which satisfies the 
initial condition 

l/I (x, 0) = a(x). 

In order to find the time dependence of l/I(x, t) we have 
to expand l/I(x, 0) in terms of the Bloch functions. The 
expansion is given in (2.1). Consequently, we have 

(2.2) 

Our aim is to calculate the expectation value of the 
operator x2 for this wavepacket: 

(X2(t) = J l/I*(x, t)X2l/1(x, t)dx. (2.3) 

We shall carry out the calculations in the (k, q) repre
sentation, introduced by Zak. 5 The use of this represen
tation reduces the mathematical complications con
siderably. The basis functions in this representation 
are 5 

IIk •q (x) = [V/(21T)3]l/2 6 e ikRn O(x - q - Rn}, (2.4) 
n 

where k and q are the quasimomentum and quasicoordi
nate, limited to the reciprocal and real space unit cells 
respectively. Zak has shown5 that the functions 11k q(x), 
being the eigenfunctions of the translation operator's in 
both reciprocal and real spaces, form a complete ortho
normal basis of the Hilbert space. 

We now transform the Bloch functions to the (k, q) re
presentation. First we express them in terms of the 
Wannier functions, inverting relation (2.1)3: 

<Pk(x) = [V /(21T)3]l/2 6 e ikRn a(x - Rn)' (2.5) 
n 

Copyright © 1973 by the American Institute of Physics 1543 
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Denoting by C1 (k, q) the transformed Block function 
corresponding to the quasimomentum quantum number 1, 
we obtain 

c1(k,q) = Jeh(x)e;.q(x)dx 

V 
= (27T)3 nL?,., f o(x - q - Rn) 

and, introducing R m = Rn - Rn' we get 

c1 (k, q) = ~ ~ a(q + Rm)eil<Rn-Rm) e- ikRn 
(27T) 3 m.n 

= ~ ~ a(q + Rm)e-ilRmeiRnU-k) 
(27T)3 m.n 

= ~ a(q + Rm)e- ilRm 0(1- k). 
m 

(2.6) 

(2.7) 

The scalar product (a I eh) is, of course, independent of 
the representation, so in view of (2. 3) we have 

lJ;(k,q,t) = [V/(27T)3]1/2 J e-iwltcl(k,q)dl 

= [V/(27T)3]1/2e-iwkt J c1(k,q)dl. (2.8) 

We now introduce a function A(k, q) given by 

A(k,q) = J c1(k,q)dl. (2.9) 

A(k, q) has three relevant properties: 

JIA(k,q)12dq = 1, (2.10) 

1m J V AA * dq = 0 (throughout this paper all gradients 
are with respect to the quasi-
momentum), (2.11) 

IA(k,q)12 = IA(k,- q)12. (2. 12) 

In order to demonstrate the first property we use the 
orthonormality of the Wannier functions 3: 

J a(x - Rn)a(x - Rm)dx = 0n.m· 

Thus 

J I A(k, q)1
2
dq 

= ~ eik(Rn,-Rn ) J a*(q + R",)a(q + Rn)dq 
n,n' 

m.n 

= ~ e ikRm J a* (x + Rm)a(x)dx = 1, 
m 

where we introduced a new variable Rm = R", - Rn' In 
the third step we used the following identity, which holds 
for any function f(x): 

~ J f(q + Rn)dq = J f(x)dx, 
n 

where the integration on the right-hand side covers the 
whole space. 

In order to demonstrate the properties (2.12) and 
(2.13), we have to assume that the Wannier function a(x) 
has the property 

a(x) = ± a*(- x). (2. 13) 
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This equality is true whenever the potential Vex) 
satisfies Vex) = V(- x), provided there are no degenera
cies. This restriction does not reduce the generality of 
our treatment too seriously, since we do not require the 
space coordinates x, y, z to be orthogonal. In fact, the' 
coordinate axes are always chosen in the direction of 
the symmetry axes of the potential. Assuming (2.13), 
we proceed now with the demonstration of (2.11): 

JVAA*dq 

= ~ J (- iR )a(q + R )e- ikRn 
n.n' n n 

x a*(q + Rn,)eikRn'dq 

= L: J iRma(q -Rm)eikRma*(q _Rm,)e-ikRm'dq 
m,m' 

= L: JiRma*(q' + Rm)eikRma(q' + Rm,)e-ikRm'dq' 
m,m' . 

= JVA*Adq', 

where in the second step we introduced new variables 
Rm = - R n, Rm' = - R n "and in the third we introduced 
q' = - q and used the property (2.13). Consequently, we 
have 

JVA*Adq = JVAA*dq, 

from which (2. 11) follows immediately. 6 

Finally, the demonstration of (2. 12) is straightforward: 

IA(k,q)1 2 = ~ eik(Rn-Rn')a*(q + Rn)a(q +Rn ,) 

n,n' 

= ~ e-ik(Rn-Rn')a(q + Rn)a*(q + R n,) 
n,n' 

= ~ eik(Rm-Rm') a(q + Rm)a*(q - R
m

,) 

m,m' 

'" i k(R -R ,) * ( ) ( R \ = LJ e m m a - q + Rm a - q + m'I 
m,m' 

where again, in the third step, we introduced Rm = - R n , 

Rm' = - R n " and in the fourth step we used (2.13). 

We can now turn to the calculation of (x2(t». In the 
basis (2.4) the operator x is represented by 5 

x = iV + q. (2. 14) 

Transforming Eq. (2. 3) into the (k, q) representation 
we obtain 

(X2 (t» = J lJ; * (k, q, t)(iV + q) 2lJ;(k, q, t)dkdq 

= - J lJ;*v2lJ;dkdq + 2i J lJ;*VqlJ;dkdq 

+ f lJ;*q2lJ;dkdq. (2.15) 

The first term of (2.15) can be written 

_ J lJ;*V2lJ;dkdq = - [V /(27T) 3] J A * e iWk t V2 Ae- iwk t dkdq 

= [V/(27T)3]f IV(Ae-iwkt)12dkdq (2.16) 

Here we used the fact that the surface integral over 
the surface of the Brillouin Zone of the functions involved 
vanishes. Moreover, 
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The second term of (2.15) yields 

2iJ lJ;*VqlJ;dkdq 

= [V/(21T)3]2iJ A *eiwktqV(Ae-iwkt)dkdq 

= [V/(21T)3]2iJ A *e iwkt 

xq(e-iwktVA - itAe-iwktvWk)dkdq 

= [V/(21T)3]2iJ A * qVAdkdq 

since, because of (2. 12), the function J q 1 A 12 dq 
vanishes for all k. 

(2. 17) 

Substituting (2. 16) and(2.17) into (2. 15),wefinaUyobtain 

(X2(t) = [V/(21T)3]J[lvAI2 + 2iA*qVA + q21AI2 

+ t 2 1 A 12(vwk)2]dkdq 

= J lJ;*(k, q, O)(iV + q)2lJ;(k, q, O)dkdq 

+ [V/(21T)3]t2 J (Vwk)2dk. (2. 18) 

Equation (2. 18) can be written compactly in the form 

(X2(t) = (x2(0) + (v2) t2, 

where 

(v2) = [V / (21T) 3]J (VWk)2dk. 

(2. 19) 

(2.20) 

Equation (2.19) is formally very similar to the classi
cal equation of motion of a particle moving with constant 
velocity. However, it should be stressed that there is a 
contribution to (x2(t) only from the spatial expansion of 
the wave packet, because for the Wannier wave packet 
we have (x(t) == O. 

3. EXPANSION AND MOTION OF GENERAL 
WAVEPACKETS 

We shall consider here the general wavepacket which 
is expressed as an arbitrary combination of Bloch func
tions from a given band: 

lJ;(k, q, t) = J g(l)cl (k, q)e- iw ltd I = g(k)e- iwkt A(k. q). (3.1) 

The Wannier wave packet is a special case of (3. 1) with 

g(k) = [V/(21T)3]1/2. 

The treatment of Sec. II is easily generalized; in fact 
all one has to do is to substitute g A for A. The follow
ing result is readily obtained: 

(x2(t) = J lJ;*(k,q,O)(iV + q)2lJ;(k,q,0)dkdq 

+ t 2 Jig 12(Vwk)2dk - 2t 

x 1m J V (gA)g* A *VWk dkdq. 
(3.2) 

In the general case, the term linear in time does not 
vanish. However, it can be simplified: 

ImJ V (gA)g * A *Vwkdkdq 

= ImJ (Avg + gVA)g* A *Vwkdkdq 

= ImJ (IAI2g*vgVwkdkdq + IgI2A*VAVWk)dkdq 

= ImJ g*VgVwkdk (3.3) 

so that (2.22) can be put in the form 

(x2(t) = (x2(0) - 2t ImJ g*VgVwkdk + (v2)t2, (3.4) 

where (V2) is the generalized mean square velocity of 
the wavepacket: 
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(3.5) 

We see that (v2) is obtained by averaging (Vwk)2 
over the k space with the weight function Ig(k) 1 2, which 
is exactly the square of the modulus of the overlap be
tween the wave packet and the Bloch function <h. 

For the general wavepacket it is no longer true that 
(x(t) = 0, so it is of interest to calculate it: 

(x(t) = J g*A*eiwkt(iV + q)gAe-iwktdkdq 

= iJg*A *(V(gA) - itgAVwk)dkdq 

= i J g*Vgdk + t J Igl2Vwkdk. (3.6) 

Here we again used the property 1 A(k, q)12 = 1 A(k, - q)12. 

Equation (3. 6) can also be put in the form 

(x(t) = (x(O) + (v)t, 

where the average velocity is given by 

(v) = J Igl2Vwkdk 

(3.7) 

(3.8) 

which is very similar to (3.5). Equations (3.7) and 
(3.8) express the well known analogy between VWk and 
velocity. 

It is interesting to apply Eqs. (3. 5) and (3. 8) to a 
"wavepacket" consisting of one single Bloch function. 7 

In this case we have 

and 

This is as expected, since, as already stated, the 
expectation value of x in a pure Bloch state with quasi
momentum ko is equal to VWk 1 k=k . 

o 
4. SUMMARY 

In the present paper a formalism was developed 
which permits calculation of the expectation values 
(x(t) , (x2(t) of the operators x and x2 for time depen
dent wavepackets subject to a three-dimensional perio
dic potential. We obtain expressions which, in general, 
justified the widely used analogy between velocity and Vwk. 

An important application of the formalism developed 
here is in atomic diffusion theory, where it is possible 
to obtain an intermediate state in the jumping process 
which is a time dependent wavepacket. Such a wave
packet displaces itself and expands before decaying back 
to a localized ground state. 2 The evolution of the ex
cited wavepacket thus becomes essential in determining 
the diffusion rates. 
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In this paper we investigate the Lie algebras obtained from the infinite momentum limit of the 
Poincare group. It will be shown that this limit depends upon a real, nonnegative number 'Y, and so 
do the structure constants of the resulting Lie algebra. which has three singular points 'Y = 1,0.00. 
The last two singularities give algebras isomorphic to two different contractions of the algebra of the 
Poincare grouP. while the case 'Y = I gives an algebra which cannot be obtained in this fashion. 
Suggestions are provided towards a physical interpretation of these results. 

1. INTRODUCTION 

The study of the kinematics in an infinite momentum 
reference system originated1 •2 with the hope that the 
dynamics too, in this limit, would become simpler. 
More recent mathematical treatments3 - 5 of the subject, 
are essentially based on a "contraction" procedure6 •7 

to be applied to the Lie algebra P of the Poincare 
group to arrive at a new algebr.a which should reflect 
the kinematics of the infinite momentum systems. 
Since, in general, there is more than one way to con
tract a Lie algebra (which is the case for P), different 
results are obtained, with accordingly different physical 
interpretations. The infinite momentum limit is em
bodied in the contraction parameter, which in the limit, 
usually attained for the value zero, gives the new algebra. 

Note that if the relativistic kinematics are described 
by the Poincare group, then two limits have been per
formed; first to have the algebra P and second to con
tract P itself in order to arrive at the infinite momen
tum reference system. In this paper we shall first 
consider the infinite momentum limit on the Poincare 
group, and then extract from this an eventual algebraic 
structure. This procedure requires the investigation 
of a Poincare transformation near a branching point 
approached when the relative velocity between systems 
tends to c, and hence a definition of this limit is needed. 

To this end we employ three reference systems and 
the linear mapping between two of them when their 
relative velocities with respect to the third one tend to 
the velocity of light c = 1 in a preassigned direction. 

In Sec. 2 we carry out this step and show how the 
mapping depends upon a real nonnegative number y 
which must be kept fixed when computing the infinitesi
mal transformations. 

Section 3 is devoted to the study of the commutation 
rules of these infinitesimal transformations, rules 
which are y-dependent and in general are not algebra
ically closed. The closure is obtained adjointing a new 
generator d. 

The structure constants of this algebra have three 
Singular points y = 1,0,00. The case 'Y = 1, treated in 
Sec. 4, is the only value of y for which the commutation 
rules are closed without the adjunction of d, giving a new 
algebra with 9 generators. 

In Sec. 5 the algebra for the singularity y = 0 is shown 
to correspond to the"one of Ref. 3, which can be obtained 
as a contraction, explicitly given in the Appendix, of the 
algebra P. 

The case y = 00, treated in Sec. 6, yields an algebra 
identical to that of Ref. 5. 
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All cases contain some remarks about a possible 
physical interpretation and their common features, as 
it is further stressed in the conclusive Sec. 7. 

2. THE INFINITESIMAL GENERATORS 

Consider three reference systems S,S' ,S";let v be 
the velocity of S' and u that of S" with respect to S both 
measured in S, while u' is the velocity of S" with res
pect to S' as measured in S'. We are interested in the 
connection between S' and S" when both Iv I and lu I ap
proach the velocity of light c = 1 and,for the time being, 
we shall take into account only the relative motions of 
the origins. From the relativistic addition low for velo
cities we have 

u' = «1 - v 2)1I2u + {[I - (1 - v 2 )1I 2]u·v - l}v)/ 

(1 - v·u) (2.1) 

and, denoting with II the direction parallel to v while .L 
indicates the plane perpendicular to v, it follows that 

u = (1 - u~)1/2U.L + u lI ' 

The substitution of (2.2) into (2.1) yields 

(2.2) 

(2.3) 

u' = {[(I - v 2 )(1 - U~)]1/2U.L + [(ulI/v) -1]v}/ 
(l-v·u ll ), \2.4) 

which, compared with (2.3), gives 

U11= (u ll -v)/(I-v·u ll ) (2.5a) 

(2.5b) 

In order to perform the limits Iv I = v ~ 1 and lu III = 
u ll ~ 1 we set 

v = (1 - a), 

u lI =(I-{3), 

a/{3 = y, 

where a,{3,y are real nonnegative numbers; hence 

U 11 = (y - 1)/(y + 1), 

u'2 = [(y - 1)2 + 4yu~2)/(y + 1)2. 

(2.6a) 

(2.6b) 

(2.6c) 

(2.7a) 

(2.7b) 

With the help of (2. 7a) and (2. 7b) we can write the 
finite Lorentz boost between S' and S" as follows: 

Copyright © 1973 by the American Institute of Physics 1546 
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,,_ y + 1 ix' _ xll(y -1) + 2X~.u~y1/2), 
Xo - 2[y( l-u~2)]1/2\ 0 y + 1 

(2.8a) 

, _ [XII (y - 1) + 2x~ ·u~y1/2 
X'II = xI! + (y 1) 4yu~2 + (y _ 1)2 

( 2[y(1 ~ :~2) ]1/2 - 1) - 2[y(1 ::~2) ]1/2] , (2.8b) 

[

X' (y - 1) + 2x' ·u'y1/2 ,,_ , + 2 1/?--' I! J. .1 
X J. - X J. Y -u J. 2 ( 1) 2 

4yu~ + y-

C[Y(1 ~:~2)]1/2 -1) - 2[y(1 :~~2)]1/2]' (2.8c) 

As expected, the limiting procedure for v and U II is not 
exactly defined, but depends upon the ratio yj we shall 
take y as a real parameter and investigate the structure 
of the transformations (2.8) as a function of y. Of 
course the group property of (2.8) may be retained only 
for some values of y, Le.,for a specified way of per
forming the limits on v and U II ' but we notice that when 
the free "group" parameter u~ is zero, (2. 8) become 

y + 1 0 0 
l-y 1 -u{ 

2.;y 2/Y 

0 1 0 0 -u{ 1 

0 0 1 0 -U2 0 

1-y y + 1 0 ,.;y-l 
0 0 -Ui.;y+l 2.;y 2.;y 

Xii = (2y1l2)-1 [(y + 1)xll - (y - 1)xo], 

Xo' = (2y1/2)-1 [(y + 1)xo - (y - 1)xll ]. 

The transformation (2.9) has 4 x 4 matrix D(y) 
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(2.9a) 

(2.9b) 

(2.9c) 

(

y + 1)/2,f:Y 
D(y) = 0 

o 
(1 - y)/2-Fi 

o 
1 

o 
o 

o 
o 
1 

o 

(1 - y)/2,fY) 

~I + y)l2./Y (2.10) 

on the vector basis (xo,xJ.,xa,x3) where x~ = (O,xi, X2, 
O),x ll = x3. This matrix becomes diagonal on the light
cone variables basis Y2 = x a' Y1 = xi, Yo = Xo + x 3' 
Y3 = Xo - x 3' where it can be interpreted as an ~isotro
pic dilatation, and form a one parameter group WIth 
multiplication rule D(y)D(~) = D(y~). It is then desirable 
to factor out the dilatations from the limit of the Lorentz 
transiormations since we would like to have an operation 
like (2.8) which reduces to the identity when u~ ---7 O. The 
factorization is carried out for the infinitesimal trans
formations, i. e.,when u~ ---70, in which case (2.8) are 
described by the product 

-U2 0 

.;y - 1 0 U' 
l.;y+l 
,.;y-1 (2.11) 

1 
U:i .;y + 1 

.;y - 1 1 -u{---

.;y + 1 

where the l.h.s.matrix is a D(y) while the r.h.s.gives the two infinitesimal,y-dependent transformations: 

( 0 

-1 0 

~'" -1)/(·[i + I) -1 0 0 

K1 = ~ 0 0 

-(-./Y - 1)/(-./Y + 1) 0 

(2.12a) 

K'=C 
0 -1 

f", -1)/('" + ) . 
0 0 

-1 0 0 

0 0 -( . ./y -1)/(·./Y + 1) 

(2. 12b) 

We remark that the extraction of the dilatation D(y) 
is not necessary when y = 1 since D(1) = 1, but this pro
cedure must be followed for all other values of yj the 
factorization may be equivalently accomplished through 
a redefinition of the basis vectors on which (2.8) act. 

In the above derivation of formulae (2.12), we have 
taken into account only the Lorentz boost between the 
two system..§. S' and S"j the appearance of the extra terms 
(-JY - 1)/(../y + 1) in the generators K1 and K2 is due to 
the limiting process performed on the finite transfor
mation. 

Having found the generators of the Lorentz boosts, we 
now turn to the investigation of the remaining ones, i.e., 
the rotations between S' and S", employing the 2 to 1 
homomorphism of the Lorentz group with SL(2, C).8 We 
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now must specify the direction of the axes and set those 
of S" parallel to the axes of S. Let: x = Xo + X k(Jk' with 
(J kthe usual Pauli matrices, be the matrix on which the 
elements A(u) of SL(2, C) actj if R(n, 9) E SU(2, C) is the 
rotation which brings the axes of S' parallel to those of 
S, and R(n', 9') E SU(2, C) the one which does the same 
for the axes of S' with respect to S", we have 

x" = A(u)XA(u)t, 

x" = A(u')R(n', 9')x'R(n', 9')tA(u)t, 

x = A(-v)R(n, 9)x'R(n, 9)tA(-v)t, 

(2. 13a) 

(2.13b) 

(2.13c) 

where, substituting (2. 13c) into (2.13a) and comparing 
with (2. 13b) we obtain 
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R(n', e') = A(-u')A(u)A(-v)R(n, e). (2.14) 

To compute the generators, we first perform the 
limiting procedure, with the subsequent appearance of the 

0 (l- .. /Y);,[Y 0 

(1 - ../y)/../y 0 0 

Al = 
0 0 0 

0 - (1 - ,JY)/../Y(,Jy + 1) 0 

0 0 - (1 -,Jy)/../y 

A2 = 

0 

-(1 - ..jy)/"/y 

0 

o 0 

o 1 

-1 0 

o 0 

0 0 

0 0 

0 -(1-"/y)/"/y + 1) 

(2.15c) 

It is apparent that only Aa has the structure of the 
usual generator of a rotation around the third axis, while 
Al and A2 contain extra terms which arise in the limit. 

For the generators of the translations we write the 
transformation in homogeneous coordinates, i.e., with 
5 x 5 matrices, extract the dilatation as shown in (2.11) 
and obtain 

(I' + 1)/2"/y 

o 
o 0 

I (1 - y)/2,Jy ___ ...1 ________ _ 

o 0 

o 
1 

o 0 

I 0 
I ------ --
I 

010 

o 
o 

o 1 
I 0 

----'---
I o I 0 

(1 - y)/2,Jy 

o 
P a = 0 0 

: (1 + y)/2../Y ___ .L _______ _ 

I 

o : 0 
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(2.16a) 

(2.16b) 

(2.16c) 

(2.16d) 
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parameter 1', and then derive with respect to the angles; 
note that no dilatation must be factored out here, since 
this has already been done for the Lorentz boost [see 
formula (2.11)]. Written in 4 x 4 notation for conveni
ence, these generators are 

0 

(1 - ,Jy)/"/y(../y + 1) 

0 

0 

(2. 15a) 

0 

0 

(2.15b) 

(1 - !y)/"/y("/y + 1 

0 

At this point we shall study the possible algebraic 
structures which can be obtained from (2.12), (2.15), and 
(2.16); naturally these structures will depend upon the 
parameter I' describing the limit. 

3. THE GENERAL p_oo ALGEBRA 

The commutators among the 9 matrices K l ,K2 ,Al ,A2 , 

Aa,Pl ,P2,To =Po-Pa,Ta =Po +Pa are 

[Kl'K2] = {1 - [(,Jy - l)/(,Jy + 1)]2}Aa, 

[K l , A2] = [K 2' Ad = [(3 - I' - 2";::;)/(";::; + 1)2]Aa, 

[Kl,Aa] = K 2, [K2,Aa] = -Kl , 

[Al ,A 2] = ([,Jy(l - 1') + 2(,jy -l)]/../Y(,Jy + 1)2}Aa, 

[Al,Aa] = - A2, [A2,Aa] = AI' 

[Kl' To] = - [2y/(,Jy + l)]Pl , 

[K l , Ta] = - [2/../Y(,Jy + l)]Pl' 

[Kl,Pl ] = [K2,P2 ] =- (To/../Y + yTa)/(l + ,Jy), 

[K2, To] = - 2y/(,Jy + 1) P 2 , 

[K 2, Ta] = - 2/[,Jy(,Jy + 1)]P2, 

[AI' To] = [,Jy(l-,Jy)/(l + ,Jy)]Pl , 

[AI' Ta] = [(2 -,Jy - y)/y(,Jy + l)]Pl , 

[Al'Pd = [P2,A2] 

(3.1) 

= [(1 - ,Jy)/2,Jy(,Jy + 1)] [(T 0/../y)(2 +,Jy) + yTa], 

[A2' To] = [,Jy(,Jy -l)/(,jy + 1)]P2, 

[A2' Ta] = [(I' +,Jy - 2)/Y(,Jy + 1)]P2, 

[Aa,Pd = - P 2, [A a,P2] = Pl' 

[K l' Ad = [A 2,K 2] = [(,Jy - l)/(,Jy + 1)] d, (3.2) 

all others being zero and where 

d~G 
0 0 

D· 
0 0 

0 0 

0 0 

(3.3) 
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These commutators, for an arbitrary value of y do not 
give an algebraically closed structure due to the appear
ance in (3.2) of the matrix d; it is evident though, that 
for the particular value y::r 1 the r. h. s. of (3. 2) vanishes 
and we do obtain an algebra. The matrix d must then 
be added to the other generators in order to have an 
algebra for any value of y; its physical interp.retation 
may be that of a dilatation generator on the lIght cone 
variables (case y = 0) or that of a Lorentz boost genera
tor along the third direction (cast y = 00), but, although 
formally it corresponds to the generator of the trans
formation (2.10) if y were treated as a free parameter, 
its presence in the general algebra can be justifi~d ?~ly 
by the closure argument. Recall in fact that the lImltIng 
procedure on the Poincare group is performed with y 
fixed, and in the same way are derived the matrices 
(2.12), (2.15), (2.16). 

The resulting commutators are 

[d,K l ] = [(v'y -1)/(v'y + 1)]K1, 

[d,K2] = [(v'y -1)/(,Iy + 1)]K2, 

[d,A 1] = [1/(v'y + 1)] {[(v'y - l)(v'y + 2)Ny]K1 

- (3 + v'Y)A1}, (3.4) 

[d,A 2] = [l/(v'y + 1)]{[(1 - v'y)(v'y + 2)Ny]K2 

- (3 + v'Y)Az}, 

[d,To] =- To, [d,T 3] = T 3, 

[d,A 3] = [d,P1] = [d,P2] = O. 

It is now interesting to study the y dependence of the 
algebra (3.1), (3. 2), (3. 4); dependence which is all con
tained in the structure constants and no longer in the 
particular representation (2.12), (2.1~), (2.16) of the 
generators. As functions of y the structure constants 
have three singular, real, nonnegative pOints,y = 0,1,00. 
A singularity must be intended as a value of y which doe!: 
does not give an algebra isomorphic to the complete 
one (3.1), (3. 2), (3. 4). It is possible that near a singu-
1arity some structure constants may diverge; then this 
divergence must be removed by a redefinition of the 
generators, thus obtaining an algebra isomorphic to the 
old one away from the singularity, but whose structure 
constants converge to a finite non zero value at the 
singular point. As we shall see, this is the case for '}' 
= 0, y = ex:>, while for y = 1 the commutation rules (3. 1), 
(3.2) are already closed with no divergent structure 
constants. The important fact is that the y Singularities 
are all assigned by the limiting procedure, and hence so 
are the algebraic structures finally obtained. 

4. CASE'Y = 1 
Setting 

J a = iAa' 

La = iKa' (4.1) 

J 3 = - iA 3 , 

Qa = Pa' Qo = i(To + T 3), Q3 = i(T3 - To), 

a = 1,2, 

we obtain, for y = 1 the commutators 

[La' L b] = - iE a bJ 3 , 

[J3,La] = iEabLb' 

[J3,Ja] = iEabJb, 
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(4.2) 

[La,Qo] = - iQa' 

[La,Qb] = - ioabQo' 

[J 3' Q a] = iE a b Q b , 

while all others are zero. 
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As it is clear from (4.2) the operators L 1 ,L2 ,J3 ,QO' 
Q Q form a subalgebra isomorphic to that of the in-

l' 2 t. 
homogeneous L2+1 Lorentz group, the commu mg op.era-
tors J 1 and J 2 are an abelian ideal, and Q3,commutmg 
with all the other generators, can be adjoined as a direct 
product. Note further that J V J 2 ,J3 form the algebra 
E 2 of the two-dimensional Euclidean group. 

There are three independent Casimir operators 9 in 
the algebra (4.2): 

Jr + J~. 

(4.3a) 

(4.3b) 

(4.3c) 

If QO,Q1,Q2,Q3 are given the meaning of components 
of the four momentum, then Q3 selects the particular 
class of reference systems in which the phenomenon is 
described, while (4. 3b) indicates that there are only 
two independent components for the spatial momentum. 
Once the value of Q3 is assigned, we actually deal with a 
two-dimensional motion taking place in a plane perpen
dicular to the direction of Q 3 itself, as it is further con
firmed from the sole presence, in (4. 2),of the operators 
Land L 2 which correspond to the transverse Lorentz 
b~ost generators. The only admissible rotation takes 
place about the third axis with generator J 3' The har
monic analysis of the rotational properties of physical 
systems, in this limit, must be carried out according to 
the algebra of J l' J 2' J 3 which is that of E 2 and this may 
lead to a description of scattering processes in terms of 
the impact parameter. 5,1 0 

5. CASE'Y = 0 

As remarked in the introduction, when,), = 0 some 
structure constants diverge and it is necessary to rede
fine the generators; in particular we must change Aa .-, 

v'y A a, To'-' ToNy, T3 '-'v'YT3. The divergence is 
essentially brought about by the dilatation (2.10) for,}, = 
0, and the above redefillition counteracts its effects on 
the light-cone variables basis. For convenience we 
shall also consider the following linear, nonsingular 
combinations of the newly defined generators: 

J1 = - ii(K2 - v'yA 2 ), J 2 = ii(K1 + v'yA1), 

J 3 = - iA 3 , 

G1 = ii(K1 - v'yA1), G2 = ii(K2 + /yA 2), 

D = -id, (5.1) 

Q 0 = ToNy, Q 1 = P l' Q 2 = P 2' Q 3 = v'y T 3' 

In the limit y = 0 we obtain the commutators: 

[Ja ,J3] = -iEabJb, 

[G a,J 3] = -iEabG b , 

[G a,Q3] = -2iQa' 

[Ga,Qb] = -ioabQo, (5.2) 
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[D, Cal = iC a , 

[D, %l = iQo, [D, Q3l = - iQ3' a, b = 1,2, 

all others being zero. 

The subalgebra generated by G1 ,C2,J3 ,Q1,Q2,Q3,D 
is isomorphic to that of the two-dimensional, nonzero 
mass Galilei group plus the dilatation D, while J l' J 2 
form an Abelian ideal in (5.2). 

The complete algebra (5.2) can be obtained by a con
traction of the Poincare group algebra P, as shown in 
the Appendix, arriving at the same results of Ref. 3. 

Note that, Similarly to the case y = 1, the generators 
J l>J 2,J 3 form the algebra E 2' with consequences, for 
the harmonic analysis of the rotational properties of 
physical systems, analogous to those already mentioned 
in Sec. 4, once for J 1 and J 2 are substituted the correct 
linear combinations (5.1) in terms of the generators ob
tained from the infinite momentum limit of the Poincar~ 
group as specified in Sec. 2. 

This algebra has two Casimir operators Q~ + Q~ -
QOQ3,Q~(J~ + J~) which can be assigned a physical 
meaning in accordance with the "Galilean invariance" 
interpretation of Refs. 3 and 4. 

6. CASE 'Y = co 

In this instance too it is necessary to redefine some 
generators, namely To --7 T 0/y1/2, T 3 --) y1/2T 3' to have 
finite structure constants. 

We then set 

J 3 =iA3 , K3 = id, 

A = ·lYT3 , B = To/2/y, 

and obtain the following commutation rules: 

[J 3,Aal = ifabA b , 

[K 3 ,Al = iA, [K3,Aal = iA a , 

[Aa,Pbl = ioabA, 

[Aa,Bl = iPa , 

all others being zero. 

[Ba,Pbl = ioabB, 

[Ba,Al = iPa , 

(6.1) 

The algebra they define is identical (with the same 
notation) to the one mentioned in Ref. 5 and hence it is 
isomorphic to P; the generators A 1 ,A 2 ,J 3 form the sub
algebra E 2 with a physical interpretation similar to 
that proposed in Ref. 5. 

Obviously the Casimir operators of (6.2) are deduc
ible from those of P through the isomorphic mapping 
which links the two algebras. 

7. CONCLUSIONS 

The questions posed in the introduction have been 
answered at the level of structure of the Lie algebras 
involved; the procedure here adopted of first finding the 
infinite momentum limit of the Poincare group and then 
computing the infinitesimal generators, yields an algebra 
with commutation rules (3.1), (3. 2), (3. 4) which contains 
the cases treated in the literature, i.e., y = 0 and y = 00, 
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and which furthermore gives a new algebraic structure 
for the remaining singularity at y = 1. We may mention 
that this last case, besides being the most direct since 
it does not need a redefinition of the generators to have 
a finite limit, is also the only one which cannot be ob
tained as a contraction of the Poincare group algebra P. 

The more interesting fact common to all three alter
natives is that, in an infinite momentum frame, we 
essentially deal with a motion in two dimensions, which 
is reflected by the presence of the E 2 subalgebra in all 
three algebras. 

This subalgebra is connected with the rotational 
properties of physical systems in such frames, where 
then the harmonic analysis must be carried out accord
ing to this result. 

It is our hope that further inSights could be gained by 
a similar procedure applied to the irreducible, unitary 
representations of the Poincare group of its algebra P, 
especially for what concerns the physical interpretation 
of phenomena described in an infinite momentum refer
ence frame. 
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APPENDIX 

LetMi'Ni,n where i = 1,2,3,/1. = 0,1,2,3 be the 
generators of the rotations, Lorentz boosts, and trans
lations, respectively, in the Poincare group algebra with 
commutation rules 

[Mi,Mj ] = iEiJkMk' 

[Ni,Nj] = -ifijkM k' 

[Mi,l\j] == if ijkN k' 

[Mi , IIj ] = if ijk II k' 

[Mi , IIo] = 0, 

[Ni , II j ] = ioijII O' 

[Ni , IIo] = iII i , 

[lIlt' IIv] = O. 

We perform the following nonsingular change of basis: 

J a =Ma - fabNb' Ca =Na - fabMb , a,b = 1,2, 

J 3 =M3, D =N3 , 

Qo = IIa - II3 , Q1 = II1 ,Q2 = II2 , Q3 = IIa + II3 , 

and contract follOwing Inonti and Wigner, 6 with respect to 
the generators J a substituting J a with T/J a and letting T/ 
tend to zero. It is easily verified that the new commuta
tors thus obtained are identical with (5.2). 
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Existence and uniqueness of solutions of the Hamiltonian 
constraint of general relativity on compact manifolds* t 
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The Hamiltonian constraint" Goo = 81T TOO "of general relativity is written as a quasilinear elliptic 
differential equation for the conformal factor of the metric of a three-dimensional spacelike manifold. 
It is shown that for "almost every" configuration of initial data on a compact manifold. with or 
without boundary. a solution exists. Dirichlet boundary conditions are assumed if the boundary is 
not empty. The solution is unique. 

1. INTRODUCTION AND SUMMARY 

An outstanding problem in general relativity has been 
to identify a minimal set of Cauchy data for the gravita
tional field. These data may be defined as those "co
ordinate" and "momentum" variables which can be freely 
given on an initial spacelike surface, but once given, 
completely define the field on the initial surface and for 
a finite time into the future. 1 The identification of these 
variables is of importance in several areas, for ex
ample: (1) in attempts to produce a quantum theory of 
gravity; (2) in astrophysical or cosmological situations 
in which exact solutions are not known; (3) in describing 
the properties of the energy of a gravitational field, and 
(4) in investigating the stability of solutions of Einstein's 
equations. 

It has been demonstrated that the initial value data are 
most naturally described by the intrinsic geometry of a 
spacelike slice, i.e., as a three-dimensional manifold V, 
with a Riemannian metric gij defined on Vj and by the 
extrinsic curvature K ij' In a Hamiltonian formulation of 
general relativity gij can be trea~ed as the "position" 
variable, and the "momentum" rr') conjugate to it is 
closely related to the extrinsic curvature: 

1Tij = g1/2(Kg ij - Kij) . (1 ) 

However,gij and 1T ij cannot be given independently on 
V, but must obey four constraints. In vacuum, the initial 
value equations are 

g1/2R _ g-1/2(1T .. 1T ij - !.rr2\ = 0, ') 2) 

where Eq. (2) is known as the "momentum constraint," 
and Eq. (3) as the "Hamiltonian constraint." 

The Hamiltonian constraint is so-called because it 
generates the time development of the gii's and the 

(2) 

(3) 

rrij's. It has been shown2 that the independent data are 
certain conformally invariant fields defined on the initial 
manifold V. The conformal factor rp is determined by 
the Hamiltonian constraint. The purpose of this paper is 
to show that this equation can always be solved and that 
the solution is unique. 

Suppose that aitT is a transverse tracefree tensor 
density of unit weight with respect to ffij' i.e., 

\7ja~T = 0, gija~T = O. 

Then under the conformal transformation 
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(4) 

(5) 

(6) 

where rp is any strictly positive real function, then a4{ is 
transverse and traceless with respect to g:j, as can be 
readily verified. 

Therefore, if we are given a manifold with a Riemannian 
ll\E;ltric gij' with a transverse, traceless tensor denSity 
a~-!r as the momentum, then the momentum constraint is 
satisfied but the Hamiltonian constraint will not be, in 
general. Now we conformally transform to a new initial 
data set. Under the conformal transformation (5) and (6) 
the momentum constraint remains satisfied for any rp. 
We try to pick a rp such that the Hamiltonian constraint 
is satiSfied, i.e., 

, , -l( ij" 1 11/2) '-1 ij' TT' R =(g) rr rrij--rr =(g) aTTaij • 
2 

(Note that here rr' = 0.) 

Since 

the Hamiltonian constraint becomes [1]2: 

8,,2,J, __ R,J, _M,J,-7, M - -1 ij TT 
v 'f' 'f' 'f' = g aTTaij' 

(7) 

(8) 

(9) 

So far we· have assumed that the momentum is trace
less, but this is not necessary. In general the momen
tum will have a trace: 

rr ij = aij + !. gl/2g ih 
2 ' 

(10) 

where T = (2/3)rrg-1 / 2 is a scalar. The momentum rr ij 

must be transverse. A particularly simple way to satisfy 
this requirement .is to pick any transverse traceless 
tensor .<;tensity a~-!r and any constant T. We can then re
gard a?T and T as independent initi~ value data. 3 Given 
a metric gij and such a choice of a~-!r and T, then for 
arbitrary rp, 

ij' ij' 1 '112 ij' rr = aTT + - (g ) g T 
2 

(11) 

continue!;!.to satisfy the momentum constraint for metric 
g:j and a~~ as in (5) and (6). Notice that T is the fixed 
constant originally chosen. 

The Hamiltonian constraint becomes the "scale equa
tion" for the conformal factor [IV]2: 

In the presence of external sources, the initial value 
equations become [IV]2: 

Copyright © 1973 by the American Institute of Physics 
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- 2'i7j ll ij = 161f Si, (13) 

R _g-l~iillij -~1l' = 161fT!, (14) 

where Si is the current density of the sources and T! is 
the energy density4. As before we can choose T = con
stant. In general, the source must also scale in a defi~ 
nite way when we make a conformal transformation. 
For example we shall here illustrate the case of a 
charge-free electromagnetic field, where it may be 
readily verified that the Poynting vector-density scales 
as Si' = t-4Si and the energy per unit proper volume 
scales T *' = cp-ST!. This behavior follows from that 
fact the electric and magnetic vectors must remain di
vergence-free under the transformation. 

The momentum constraints remain independent of the 
Hamiltonian constraint, just as above, i.e., they can 
readily be solved in a conformally invariant manner. 
The scale equation 5 is now [IV]2 

8V2cp = R cp - M cp-7 + h2cp5 - 161fT: cp-3. (15) 

In this paper we will show that: 

(1) A positive, bounded solution cp to the scale equation 
"almost always" exists, Le., the initial data sets for 
which a solution does not exist occupy a "set of measure 
zero" in the function space of all initial data sets (that 
is, all choices of gij' (jii, T, and Tt). These exceptional 
cases correspond to physically unrealizable configura
tions of gravitational waves and matter. 

(2) If a solution exists, it is unique. (The only exception 
is trivial; see Sec. 3.) 

In the proofs of existence given in this paper, it has been 
assumed that the initial manifold is "compact." We are 
USing the term "compact" in the sense usually intended 
by phySicists. That is, we call a compact manifold 
without boundary "closed" to distinguish it from a com
pact manifold with boundary. By the latter term we 
mean that the boundary is included as part of the mani
fold and that the resulting structure is compact. Thus 
"compact" in this work refers to "closed" manifolds 
(boundary is empty) or to "non closed" compact manifolds 
(boundary is not empty). If the boundary is not empty, we 
have assumed the physically natural Dirichlet boundary 
condition, i.e., cp is specified on the boundary. This ter
minology agrees with that, of Choquet-Bruhat in Ref. 5. 
In Sec. 2 and Appendix B we deal with the proof of exis
tence when the manifold is closed. In Appendix I we 
treat the case when the boundary is not empty. 

The conformal method and its attendant physical impli
cations2 are also valid for asymptotically flat "open" 
initial manifolds,i.e., in the case where the boundary is 
"at infinity." In this case one requires that cp --t 1 + 
O(r-1 ) as r --t 00. The coefficient of the O(r-1 ) term is 
essentially the total mass of the system, assumed to be 
finite. The further technical requirements on the asymp
totic behavior of the phYSIcal fields that are sufficient 
to establish our results concerning existence of solutions 
in·this case are mentioned in Appendix A. The proof of 
uniqueness in Sec. 3 is valid as given for both compact 
and open manifolds. 

2. EXISTENCE 

The scale equation has the form 

\7 2 cp = P(cp, x) (16) 
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on some manifold V, where P(cp,x) is a polynomial in cp 
whose coefficients may be position-dependent. The fol
lowing general existence theorem may be proved about 
such equations6 : 

Theorem I: The equation V2cp = P(cp, x) has a pOSi
tive bounded solution cp on a closed manifold if there 
exist two positive constants cp_, cp+ (cp_ < cp+) such that 

P(cp_,x) < O} 
"Ix E v. 

P(cp+,x) > 0 
(17) 

The solution lies in the interval (cp_, CPJ. We can prove 
this theorem in two independent ways: 

(i) By using an iterative technique. This is shown in 
Appendix A. 

(ii) By using Leray-Schauder degree theory. This is 
shown in Appendix B. 

Here we will only offer an argument as to the reason
ableness of this result. The existence of cp_, cp+ shows 
that for each point x E V,P(cp,x) has one real positive 
root (or an odd number of such roots) lying in the inter
val (cp_, cp+). Let us restrict our attention to the case 
where P( cp, x) has one real root only, as this is sufficient 
for our purposes. Therefore, the theorem in essence 
says that if the polynomial has, for each x E V, a root in 
some bounded, fixed interval (cp_, cp+), then Eq. (16) has a 
solution in the same interval. 

Firstly, if P( cp, x) had no real root for any x then Eq. 
(16) on a closed manifold does not have any solution, 
because the nonexistence of a real root implies that 
P(cp,x) is either always positive or always negative. 
However, 

f\72cpdv =.0 (18) 
v 

since V is closed. Therefore, 

f P(cp,x)dv ::;:: 0, (19) 
v 

which is a contradiction. Returning to the case where P 
has one root, if P(cp, x) has a fixed root CPo for all x E V, 
then obviously CPo is a solution to Eq. (16). Now, let 
P(cp, x), instead of having a fixed root, have a root in a 
small interval ocp around CPo. as x varies over V. It 
seems reasonable to conClude that \72cp::;:: P(cp, x) again 
has a solution. Elementary considerations show that 
this solution must lie in the interval o¢. Of course, this 
discussion is only meant to be suggestive. The treat
ment of the problem in the appendixes shows that this 
heuristic reasoning leads to a correct conclusion. 

To apply Theorem I to the scale equation, we have to 
look at the polynomial 

to see whether or not it has a real, positive root in some 
fixed interval (cp_, cp+) as x varies over V. The roots of 
P(cp,x) coincide with those of Q(cp,x) = ¢7P(cp,x),since 
we are only interested in cp > O. We have 

(21) 

This polynomial is a cubic in cp4. Let us investigate the 
simplest case M > 0, T '" O. An arbitrary cubic can have 
zero, one, two, or three positive roots. However, Q(O, x) := 
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- M < 0 and Q(cp, x) tends towards + iT2cp 12 > 0 as cp be
comes large, for all x. Therefore it can have only one 
or three positive roots. Say it has three positive roots 
a, (3, 1'; therefore 

Q(cp, x) == jT2(cp4 - a )(cp4 - (3)(cp4 - 1'). (22) 

The term in cp4 is h2(o.{3 + (31' + 1'0.)1/>4 > O. However, 
the term in 1/>4 is - 161TT:cp4 ~ O. Therefore, the poly
nomial has one and only one positive root. So long as 
M, T:,R, and T are bounded this root will lie in some 
positive, finite interval for all x. Therefore, so long as 
M > 0, T ;,t 0, the scale equation always has a positive, 
bounded solution, irrespective of the behavior of T! and 
R, on a closed manifold. 

Since only the conformal equivalence class of the initial 
metric is significant, we have the choice of switching to 
any representation of the conformal geometry we please 
before attempting to solve the scale equation. In other 
words, any Riemannian metric conformally related to 
the original one may be used. This freedom is repre
sented by the fact that the scale equation maintains the 
same form under such a transformation. Let gij == 
e4gij" Then Eq. (15) becomes 

8V 2(f ==R(j) -M(f-7 + iT2(f5 -161TT!(f-3, (23) 

(f == l/>e-1 ;M == Me-12 , T! == T! e-S;R == Re-4 - se-5v 2e. 
(24) 

If for some particular choice of these variables, one 
can prove that a solution to the scale equation exists, 
then clearly, for an~ other conformally equivalent set 
of data gij = e4g ij ,M == Me-12 , T; = T;e-8 , T == T, a solu
tion will also exist. We want to use this initial freedom 
of choosing the initial data in order to simplify the 
application of Theorem I to the scale equation in cases 
for which M :;. 0, rather than the stronger assumption 
M > 0 made above. For example, we can prove that if 
M + t! is not zero everywhere on V, and T ;,t 0, then a 
solution to the scale equation must exist. The key idea 
is that, on a closed manifold, we can always find a con
formal transformation that makes the scalar curvature 
negative on any given proper subset of the manifold, 
though not, of course, on the entire closed manifold. This 
is shown in Appendix C. 

Since M + T! is not everywhere zero, suppose it vani
shes only on a proper subset V 0 01 V. Choose a confor
mal transformation e that makes R negative on Vo. Then 
P«(f, x) has a single, posit:!.ve ro~ for each x E V, and so 
Theorem I shows that V2cp == P(cp,x) has a positive, 
bounded solution. Hence the scale equation has a solution 
in any conformally equivalent set of initial data, also. 

If we consider yet more special cases, e.g., such that 
either M + T! or T vanishes everywhere, we can no 
longer always prove that a solution exists. We can use 
the existence theorem, however, to place nontrivial 
necessary and sufficient conditions on the conformal in
trinsic geometry for a solution to exist in these cases. 

(i) If T = 0, i.e., the slice is "maximal," the scale 
equation has a solution if a conformal factor exists that 
transforms the given intrinsic geometry into one which 
has vanishing scalar curvature wherever M + T! vani
shes, and has positive scalar curvature wherever 
M + T! > O. This follows from examining the roots of 
P(cp,x) in this case. 

(ii) Let both M and T! be zero everywhere on V. (a) 
If T ;,t 0, the conformal...!ntrinsic geometry must have a 
representation where R < 0 everywhere, for a solution 
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to exist. This is not true of every conformal equivalence 
class of Riemannian metrics. 7 (b) If T = 0, i.e., the slice 
is mass-free and time-symmetric, a solution in general 
does not exist. 7 

The existence theorem was only discussed for closed 
manifolds but it is also true for manifolds with a boun
dary, with Dirichlet boundary conditions (see Appendix I). 
The only added condition is that if CPB is the boundary 
value, then we require that 

(25) 

In the particular case of the scale equation, this is very 
easily accomplished and a solution exists "almost 
always" in both cases, i.e., except in very special cir
cumstances such as noted in (i) and (ii). The "generic" 
case T;,tO andM and T! not vanishing everywhere al
ways leads to a solution for any conformal equivalence 
class of initial metrics. 

3. UNIQUENESS 

The existence theorem suggests that each root of 
P(cp,x) signals another solution to V2cf> = P(cf>, x). In the 
case of the scale equation P(cf>, x) has one and only one 
positive root, therefore we should not be too surprised 
at the following: 

Theorem II: On a closed manifold, any positive 
bounded solution to the scale equation is unique except 
in the (trivial) case of the vacuum at a moment of time
symmetry: M = T! = T = 0 everywhere on V. 

PrOOf: Let us assume that we start off with a set 
of variables g i·, (Jij, T!, T, for which the scale equation 
V2cf> == P(cp,x) has a solution. Let us denote this solution 
by cf>s. Using cf>s as a conformal factor and transforming 
the initial data as in Eq. (24) we get, of course, a set of 
initial data that obeys the Hamiltonian constraint: 

(26) 

NOW, if the scale equation does not have a unique solu
tion, then there must exist a positive, bounded cf>, not iden
tical to cf>s, which is also a solution of 'J2cf> == P(cp,x). 
Using CPs as a conformal transformation this equation for 
cp becomes [see Eq. (23)] 

SV2(f == _M(f-7 -161TT!(f-3 + RiP + h2(f5. (27) 

If the uniqueness property of the scale equation does 
not hold, then Eq. (27) has a solution cf> not identically 
equal to 1. We can prove that this does not happen by use 
of the following result. 

Lemma 1: If P(cf>, x) obeys the following conditions: 

P (cf>, x) < 0 when cf> < 1, 

P(cp,x) > 0 when cf> > 1, (2S) 

for each x E V, where V is closed, then V 21/> == P(cp, x) has 
a unique solution cf> == 1. 

Proof of Lemma: Let there exist a solution cp not 
identical to 1. Denote v:. = {x E vlcp(x) < 1}. The set 
V_is either empty, identical to V, or a proper subset of 
V. It cannot be identical to V because then P(cp,x) < 
o 'If x E V and 

1. V2cf>dv = 0 = f P(cf>,x)dv v v 
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which is a contradiction. 

If V_ is a proper subset of V, it is easy to show that 
cp(x) = 1 V x E a V_ (a = boundary operator). Now we 
can write 

i cp'\1 2cpdv = 1 cp(V~)· dS - J ('\1cp)2dv 
Y.:. ay_ y_ 

= 1 (vcp)· dS - J ('\1</»2dv 
il~ v.:. 

= J '\12cpdv - J ('\1cp)2dv v.:. y_ 

Therefore, 

f ('V</»2dv = J (1 - cp)'\12cpdv = J (1 - cp)P(cp,x)dv. 
v- v- v-

In le, P(cp,x) < 0 and (I - cp) > O. Therefore the left
hand side is positive and the right-hand Side is negative, 
which is a contradiction. Therefore V_ is empty. A simi-
1ar argument will lead to the conclusion V+ = 
{x E vi cp(x) > I} is also empty. Therefore the only solu
tion is cp == 1. 

To return to the main theorem, it is clear that P(ep, x) 
obeys the conditions of Lemma 1 so long as at each 
point x E V either iJ "" 0, or T! "" 0, or r "" O. 

To cover the cases in which all of these coefficients 
vanish on some subset V2 of V,i.e.,P(ep,x) = O,V cp, 
V x E V 2' we need an additional result: 

Lemma 2: If there exists a proper subset V1 of a 
closed manifold V such that 

and 

P(cp,x) < 0 when cp < I} 
for each x E Vv 

P(cp,x) > 0 when cp > 1 

P(cp, x) = O,V cp,V X E V2 = C(V1),C = complement, 
(29) 

then 'V 2cp = P(cp, x) has a unique solution cp = 1. 

In this case we can show, just as in Lemma 1, V1 n V_ 
is empty and V 1 n V+ is empty, Therefore cp == 1 on V 1 • 
Therefore cp == 1 on aVl" However on C(V1 ) the equation 
becomes 'V 2cp = 0 with boundary condition cp= Ion av2• 
The only bounded solution of this is cp = 1 on V 2' There
fore, the equation has a unique solution. Applying Lemma 
2 to our basic equation 

8\'7 2if) = -iJif)-7 -1611T:if)-3 + RiP + ir2if)5, (27) 

with 

-M -1611T! + R + ir2 = 0, (26) 

we see that the only case in which either Lemma 1 or 
Lemma 2 does not hold is trivial one when P(if), x) = 0 
for every x in V. In this case, the vacuum, time-symmet
ric configuration, the scale equation reduces to \1 2if) = 0, 
and on a closed manifold, any positive constant is a 
solution. 

This very strong uniqueness property carries over to 
the case where V has a boundary. In this case, since we 
have to specify the value of cp on the boundary, we seek 
a second solution to the scale equation different from 
cp = l,but with cp = Ion the boundary.s We require the 
additional condition that J Vcp odS is finite. This is 
sufficient to permit ilY 

~JVcp)· dS = §ay cp(vcp)· dS 

since </> = 1 on a v. 
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Then, using this in conjunction with 

i cp\12cpdv = J< cpVCP· dS - f ('Vcp)2dv 
Y )fay y' 

we obtain 

fy {'Vcp)2dV = fy (l-cp)P(rp,x)dV. 

The right-hand side is always negative, whereas the 
left-hand side is positive. In the case where V has a 
boundary, even a "boundary at <:I:Y' we always have 
uniqueness, even when M = 0, T * = 0, r = 0, because in 
this case the equation is \1 2 cp = 0, rp = 1 on av, and the 
only bounded solution is rp = 1. 

The requirement that §. Vp °d S be finite is not purely 
a mathematical convenie&le out has physical content. 
Arnowitt, Deser, and Misner constructed an expression 
for the energy of an asymptotically flat gravitational 
field, which depends only on the behavior of the intrinsic 
3-geometry at infinity.9 If the 3-geometry is changed by 
a conformal transformation rp, the change in energy 
satisfies10 

AE = - ~ § (Vcp)' dS. 
211 ay 

(30) 

Therefore we have the following result: A solution to the 
scale equation on a manifold with a boundary is always 
unique when AE is finite. 

APPENDIX A: AN ITERATIVE PROOF OF THE 
EXISTENCE THEOREM ON COMPACT MANIFOLDSll 

In this appendix we will give a detailed proof of the 
existence of a solution to \1 2rp = P( cp, x) on a nonc1osed 
compact manifold, with Dirichlet boundary conditions, 
i.e., we fix the value of cp on the boundary. Of course, 
we are especially interested also in the case of asymp
totically flat open manifolds, i.e., ones with boundary 
"at infinity." To extend existence to this case, one needs 
conditions on the asymptotic behavior of the fields. (The 
result on uniqueness in Sec. 3 is valid in the case of 
either compact or open manifolds.) These additional re
quirements amount essentially to the statement that the 
total mass of the system of gravitational waves, matter, 
and other fields is finite. Of course, in this case one 
would not use r = constant, but r ::: 0 would still be quite 
useful. Nonconstant choices of r would also be valid, 
with r '" 0(r-2 ) as r ~ CXl being quite sufficient as re
gards asymptotic behaVior. (The method of solution of 
the momentum constraints for non constant r is dealt 
with in IV2 and is treated in more detail in a forthcom
ing paper. We shall not present here the details of the 
asymptotic behavior of all the relevant variables since 
the mathematically sufficient conditions turn out to be 
the physically natural ones discussed by Arnowitt, 
Deser, and Misner12 who used, however, techniques dif
ferent from the present ones. Also, a recent mathema
tically rigorous discussion of asymptotic behavior in 
the context of perturbation theory on open manifolds has 
been given by Choquet-Bruhat and Deser.13 Similar 
considerations should prove to be quite adequate for the 
exact nonperturbative techniques employed here and in 
IV2. The authors would like to thank Professor Choquet
Bruhat for discussions on this subject. 

We proceed to discuss the case of a compact manifold 
with boundary. The present existence theorem could be 
generalized to the open case by conSidering a sequence 
of compact manifolds whose boundaries tend towards 
infinity. If a solution exists for each compact manifold, 
and if all the functions are well behaved in terms of the 
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considerations mentioned above, then we expect a solu
tion to exist in the open case also. The solution will be 
unique. An alternative treatment would be to apply the 
compactification technique of Geroch.14 

Theorem Ill: V2¢ = P(¢, x) has a positive, bounded 
solution on a compact manifold V, which has the positive 
value CPB on av, when two positive constant cP_, cP+ exist, 
such that 

(A1) 

and 

P(CP_,x) < O} 
P(¢+,x) > 0 

V X E V. (A2) 

The solution is bounded by cP_, cP+. 

Proof: It is convenient to introduce new variables: 

8 = ¢ - ~ (¢ + + ¢ _), 
2 

- 1 8 = CPB - "2(CP+ + ¢-), 

1 
a = -(CP+ - ¢-). 

2 

(A3) 

(A4) 

(A5) 

Substituting these variables into the original equation 
we get 

\7 28 = Q(8,x) (A6) 

with 8 = 8 on av, and also 

Q(a,x) > 0 ( 

Q(_ (1I,x) < 0 \ V X E V, (A7) 

(AS) 

Now we will construct a sequence of functions Om, which 
as m goes towards infinity, tends towards a solutio!! of 
Eq. (A6). Each member of this sequence will have ° as 
boundary value, and will lie in the interval (- (11, (11). 

Define 

k = max Ii! Q(8,x) I. 
-a<e<a dO 

Consider the sequence of functions 8m (with 81 = (11) 

given by 

(A9) 

(A10) 

with 8m = 0m+1 = ° on avo Since k > 0, this is a well
defined sequence, because given Om' the theory of linear 
elliptic equations shows that 8m+1 uniquely exists. In 
addition, the maximum principle shows that 

(All) 

Firstly, 

\7 2 8 2 -k8 2 = Q«(1I,x) -k(1l. (A12) 

Now Eq. (All) shows 

18 2 1:s max le,k-1[Q«(1I,x) - k(1l]I. 
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Since lei < (1I,Q(a,x) > 0, 

(A13) 

Now try induction. Assume 8m given, - (11 :S 8m :S 0m-1 :S 

(11, where 8m is a solution of 

(A14) 

Consider 8m+1 as a solution of 

(A10) 

Subtract (A10) from (A14): 

\7 2 (Om - 8m+1) - k(8 m - 0m+1) = Q(Om-l>x) - Q(Om,x) 

- k(8 m-1 - 8m) ..,,; O. (A15) 

Since k > 0, we can use the maximum principle, which 
gives Om - 8m+1 ..,,; 0 since 8m - 0m+1 -70 on avo 
In addition, it is easy to show 

Therefore, Eq. (All) shows I 8m +11 ..,,; (11. 

Therefore, 

This is a bounded sequence. It is demonstrated in 
Courant and Hilbert15 that this sequence has a limit 8. 
Obviously 8 is the function we require. The existence of 
¢_, C/>+ and the relevant properties of P(¢, x) have already 
been discussed in the text. 

APPENDIX B: LERAY-SCHAUDER DEGREE THEORY 
AND THE EXISTENCE THEOREM 

The Leray-Schauder degree16 is an extension of the 
concept of the local degree of a mapping to infinite
dimensional function spaces. The local degree of a 
mapping 8 is a function of the subset D of its domain and 
of a point P of its range. There are many equivalent 
definitions. One of them is 

d(8,D,P) = 6 sgndetJe(x). 
x Ee-1(p)nD 

(Bl) 

Je is the Jacobian of the mapping. We require Je ,.. O. 
The local degree has two properties of interest: (i) an 
existence theorem: if d(8, D, P) ,.. 0, then 3 qED such 
that O(q) = P, i.e.,P has a pre-image in D. (ii) The local 
degree is an invariant measure of the number of pre
images that P has under 8 in D. It is unchanged by a 
smooth change of 8, or D, or P, except when a point on 
the boundary of D gets mapped into P. 

Leray and Schauder showed that an equivalent concept 
could be defined for compact transformations between 
Banach spaces. Both the existence and invariance pro
perties carry over from the local degree to the Leray
Schauder degree. As a preliminary, let us recall a num
ber of definitions: A Banach space is a normed linear 
space that is complete in the norm. A compact space is 
one in which every infinite sequence has a limit point. 
A compact transformation T is a continuous transforma
tion with the added property that T(M) is compact for 
every bounded set M. Let Tt be a family of compact 
transformations, t E [0,1], then T is a homotopy if T t is 
uniformly continuous in t. 
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Basic Theorem of Leray and Schauder: Let Tt be 
a homotopy of compact transformations between a -
Banach space Cl3 and itself. Let E be a subset of Cl3. 
Then if (I - Tt)(x) '" (5 v_t E [0,1], V X E 'OE where I 
is the identity map and 0 is the origin of Cl3, then d[ I-
Tt' E, 0] exists and has the same value for each t E [0, 1]. 
The proof of this theorem may be found in Ref. 16. 

Application to Theorem I: Consider the Banach 
space Cl3 of all C3 functions on V. Choose any number 
¢o such that ¢_ < ¢o < ¢+. Now consider the differential 
equation 

'V2U - U = - ¢o + t[P(v,x) - v + ¢o], (B2) 

where v E Cl3, t E [0,1]. This equation is to be solved for 
U E Cl3. Given (v, t) E Cl3 x[O, 1], the right-hand side of 
Eq. (B2) becomes a well-defined C 3 function of position 
fv,t(x),so long as the initial data are C 3 functions also. 
Therefore, Eq. (B2) reduces to 

(B3) 

It immediately follows from the theory of linear ellip
tic equations that this equation has a unique solution. In 
addition, the maximum principle shows that 

max I ul ~ max If(x) I. (B4) 
v v 

Therefore Eq. (B2) is a transformation of the form 
Cl3 x [0,1] ~ Cl3, Tt(V) = U. We wish to apply the basic 
theorem to this transformation. Firstly Eq. (B4) shows 
that T is a continuous transformation. The requirement 
that everything is C3 is more than enough to guarantee 
compactness,17 Finally we need to show that T t is uni
formly continuous in t. Change variables to Uo = U - ¢o' 
The equation for U 0 becomes 

'V2UO - Uo = t[P(v,x) - V + ¢o]. 

Define 

A = max Ip(v,x) - V + ¢ol < CO. 
VEE 
XEV 

Givene:,defineo=e:!A. Then if It1 -t2 1<0, 

maxIUO(v,t 1 )-UO(v,t2)1 <e: 
XEV 

(B5) 

(B6) 

for any vEE. This is because Uo(v, t) = tuo(v, 1), and 
I U(v, 1) I ~ A. Therefore, if I t1 - t21 < 0, then 
I T t1 (v) - T t2(v)l< e:. Therefore T is uniformly con
tinuous in t. 

To make use of the basic theorem we have to select 
some E C Cl3. We choose E to be the set of all C3 func
tions on V, bounded by ¢_ an~ ¢+. It is easy to show that 
if v == ¢_ or ¢+, (I - Tt)v '" 0 for any t E [0,1]. This 
depends on the fact tha~P(¢_,x) < 0, P(¢+,x) > 0. 
Th~efore d[I - Tt,!i, 0] is well defined and d[I - Tv 
E,O] = d[I - To,E, 0]. 

The map To takes every point of E into a single point, 
the constant function ¢o. Th~refore 1- To takes one 
and only one point of E into 0; that point is again the con
~ant function ¢o. It is easy to show that d[I - To,E, 
0] = 1. Therefore, 

(B7) 

Hence, there exists a function ¢e:E, which is mapped 
by 1- T 1 into O. It immediately follows that this func
tion obeys the equation 'V 2¢ = P(¢, x). 
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It is impossible to conformally relate a metric whose 
scalar curvature is everywhere positiVI;! to one whose 
scalar curvature is everywhere negative on a closed 
manifold. On the other hand, it is always possible to 
find a conformal transformation that will make the 
scalar curvature negative on any proper subset Vo of V. 
Firstly, it is always possible to change the scalar cur
vature by using a constant conformal factor 0, i.e., 

(Cl) 

We can choose 0 large enough so that IR' I < lt2 on Vo , 
i.e., choose 0 4 > 2 max IR I on VO' 

Now in this new metric solve 

8'V'2U-U= ° (C2) 

on V 0' with U = 1 on a VO' The theory of linear elliptic 
equations shows that this equation has a strictly positive 
solution U. Choose as conformal factor ¢' any strictly 
positive, bounded function that matches U on VO' Then, 

But on VO' 8V'2¢, = ¢'. Therefore, on Vo,R" = 
(¢')-4(R' - 1). Since R' < ton Vo,R" < ° on VO' 

*Based in part on N. O'Murchadha, "Existence and Uniqueness of 
Solutions to the Hamiltonian Constraint of General Relativity," 
doctoral theSis, Princeton University, February 1973. 

(C3) 
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finite time. See, for example, the article by Y. Choquet-Bruhat in 
Gravitation, edited by L. Witten (Wiley, New York, 1962). The 
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initial data is specifiable in such a way that the rest of the initial data 
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The problem of determining the scattering amplitude for a given fixed-energy elastic differential cross 
section is discussed in the spinless case. We show that when the energy is above the inelastic 
threshold. one may construct an infinte family of unitary scattering amplitudes. by appropriate 
variation of the elasticity parameters. These amplitUdes are analytic in the cosine of the scattering 
angle throughout the Lehmann ellipse. and all correspond to the same cross section. Hence. even if 
the cross section is known exactly. there are infinitely many sets of phase shifts. Similar results have 
been obtained in earlier work. under conditions (on the cross section and elasticities) which seem to 
be physically unrealistic. In the present paper. the outstanding unrealistic assumptions are avoided. 
In particular. a finite number of zeros of the dispersive part are now allowed. Each zero reduces the 
continuum ambiguity by one elasticity parameter. but leaves infinitely many parameters to be varied 
independently. 

1. INTRODUCTION 

The problem of phase-shift analysis may be idealized 
as follows. Take the case of spinless particles, and 
suppose that the differential cross section is known 
exactly at a fixed energy. The latter is equivalent to 
knowing the modulus g(z) of the scattering amplitude 
f(z) = g(z) e i</J (z) (here, z = cose is the cosine of the 
scattering angle, and the energy variable is suppressed). 
The task of phase-shift analysis is to determine the 
phase <I>(z) by imposing the unitarity condition. Unitarity 
is imposed by means of the partial-wave expansion 

fez) = L (21 + l)fI Pz(z), (1. 1) 
1 

(1. 2) 

In a phase-shift analysis, 111 and 01 are determined so 
as to give the experimental value of g(z) = If(z)I. The 
determination of 111 and /j 1 is subject to the constraint of 
the optical theorem, and the unitarity requirement, 
0:$111:$1. 

The actual problem of energy-independent phase
shift analysis is more involved than this idealization, 
since one usually has particles with spin, and there are 
experimental errors to contend with. It is, nevertheless, 
important to study the idealized case, since the ambi
guities of the actual problem are expected to be at least 
as severe as those encountered here. 

In Ref. 1 it was shown that there is a continuum ambi
guity in phase-shift analysiS, provided the energy is 
above the particle production threshold, and that g(z) 
and the elasticities obey certain bounds. In other words, 
there are infinitely many choices of the /j 1 and 111' which 
are compatible with a given differential cross section 
and unitarity, when the conditions of Ref. 1 are satisfied. 
The reason that this situation is normally overlooked is 
that one habitually truncates the partial-wave series 
(1. 1) at a finite number of terms. Consequently, the 
chi-squared of the phase-shift fitting program has a 
finite number of minima, and one gets the false impres
sion that any ambiguity is at worst finite-dimensional. 
The existence of a continuum ambiguity depends essen
tially on there being an infinite number of partial waves,2 
Of course, a model with a finite number of waves is un-
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physical, since it violates basic requirements of analy
ticity and crOSSing symmetry. 

The bounds on the cross section and the elasticities 
required in Ref. 1 may not be physically realistic. For 
instance, if there is a deep and sharp dip in the cross 
section, or too much inelasticity, the bounds will be 
violated. The bounds of Ref. 1 are artifically restrictive, 
however, and have more to do with limitations of mathe
matical technique than with intrinsic properties of the 
unitarityequation. Indeed it was pointed out that the 
solution of the unitarity equation obtained in Ref. 1 is a 
continuous function of the 111 in some region surrounding 
their original values. The extent of this region was 
underestimated in Ref. 1, perhaps by a substantial 
amount, since one knows (by the implicit function theo
rem) that the solution of the equation varies continuously 
when the 111 are varied, until a singularity of the uni
tarity equation is encountered. By presence of a Singu
larity of the equation, we mean that the Frechet deriva
tive (the infinite-dimensional Jacobian) of an appropriate 
nonlinear integral operator, defined through the unitarity 
equation, does not possess an inverse. That is, the con
tinuum ambiguity extends at least to the first singularity 
of the equation. It then becomes important to understand 
the possible singularities, if one is to deal with the con
tinuum ambiguity in practical problems of phase shift 
analysis. 

The object of the present work is to generalize the 
discussion of Ref. 1 in such a way that unphysical 
assumptions are removed. We ask if the elasticities of 
a given unitary scattering amplitude can be varied con
tinuously from their initial values, in such a way that the 
cross section remains the same and unitarity is main
tained. The given amplitude could be the result of a 
phase shift analysis, so this is a question of practical 
importance. In previous work we did not assume that an 
amplitude was given, but rather gave sufficient condi
tions [on g(z) and on elasticities] for a unitary amplitude 
to exist. These sufficient conditions were too restrictive 
to cover the majority of realistic cases. 

As was noted above, the main task in removing the 
restrictions of our previous method is to study the sin
gular points of the unitarity equation. One such Singular 
point occurs when cos<l>(z) has a zero. We given special 
attention to this case, which has not been dealt with 

Copyright © 1973 by the American Institute of PhysiCS 1558 
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heretofore, and which is expected to arise frequently in 
practice. 

In conjunction with conSidering the removal of un
physical res.trictions, one naturally asks whether the 
continuum ambiguity remains when other phySically 
realistic constraints such as analyticity are imposed. It 
is generally believed that amplitudes for strong inter
actions should be analytic in a region of the z plane 
which includes the Lehmann ellipse. 3 This analytiCity is 
intimately related to the short range nature of the strong 
interactions. In Ref. 1, g(z) and ¢(z) were required to 
be continuous but not necessarily analytic. Atkinson, 
Mahoux, and Yndurain4 have found that the requirement 
of analyticity in an ellipse of the z plane does not remove 
the ambiguity. The conditions under which their proof 
holds are similar in restrictiveness to those of Ref. 1; 
in particular, zeros of cos¢(z) are not allowed. In the 
present study, analyticity of the amplitude is incorporated. 

The conclusion of our analysis, now valid under 
assumptions which seem quite acceptable from the phy
sical point of view, is that phase-shift analysis in the in
elastic region is subject to an ambiguity of a serious 
nature. Namely, even with exact scattering data, the 
amplitude resulting from a particular phase-shift 
search is merely one of a continuous infinity of accep
table amplitudes, each satsifying the condition of uni
tarity and analyticity in cose. As was mentioned above, 
this ambiguity appears only when all partial waves are 
included. It should not be confused with the ambiguity 
noted by Gersten,5 which becomes at worst a discrete 
ambiguity when the constraint of the optical theorem is 
met. Our ambiguity is not removed by the optical 
theorem. 

How, exactly, does the continuum ambiguity relate to 
the practical problem of phase-shift analysis? Suppose 
that fez) is an amplitude obtained from a particular 
phase-shift analysis. The amplitude might be composed 
of a finite number of partial waves, as in a traditional 
phase-shift analysis, or it might contain an infinite 
number of waves (but depend on only a finite number of 
parameters), as in a Cutkosky-Deo analysis.2 Then one 
may construct explicitly any number of additional uni
tary analytic amplitudes which will fit the same data. 
The construction is done by solving a certain differen
tial equation, Eq. (3. 18). This equation may be solved 
numerically by standard methods for initial value pro
blems. It should be interesting to solve the equation in 
specific cases, in order to determine the severity of the 
ambiguity in practical situations. Of course, the present 
treatment does not apply to all cases of interest in that 
spin is omitted, but preliminary studies indicate that the 
ambiguity is equally serious when spin is included. As 
in the spinless case, one may formulate a differential 
equation to compute arbitrarily many amplitudes to fit 
given data. 

In Sec. 2 we obtain theorems on the existence of uni
tary analytic amplitudes having given cross sections and 
given elasticities and a theorem on existence of the con
tinuum ambiguity. This discussion, which is in the spirit 
of Refs. 1 and 4, is preliminary to the buSiness at hand. 
We include it because it introduces our mathematical 
method, and shows how the proofs of Ref. 1 are genera
lized to the case of analytic functions. Our technique is 
different from that of Ref. 4. 

In Sec. 3 we are concerned with the nature of the con
tinuum ambiguity when cos¢(z) has a zero. We assume 
existence of an amplitude with one such zero, and apply 
the implicit function theorem to obtain the behavior of ¢ 
when elasticities are varied. When only one of the elas-
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ticities 1]1 is varied, the Jacobian of the system (more 
exactly, the Frechet derivative with respect to ¢) is sin
gular, and the implicit function theorem cannot be applied. 
If two or more elasticities are allowed to vary, then the 
problem becomes nonsingular, but only one of the two 
elasticities may be varied independently. The dependent 
elastiCity, along with ¢, is obtained as a function of the 
independent one through a differential equation. In fact, 
the effect of each zero of cos¢ is to reduce the conti
nuum ambiguity by one dimension. Infinitely many of the 
1]1 remain to be varied at will. 

The discuss ion of Sec. 3 is carr ied out under the 
assumption that g(z) has no zero in the ellipse of analy
ticity. In Secs. 4 and 5 we give alternative methods 
which avoid this assumption, while giving results similar 
to those of Sec. 3. 

2. EXISTENCE OF UNITARY ANALYTIC 
AMPLITUDES WITH A GIVEN CROSS SECTION 

Suppose that fez) is a scattering amplitude which is 
analytic in the open domain S bounded by the unifocal 
ellipse (foci at ± 1) with semi major axis of length z o' 
The function 

a(z) = f*(z *)f(z) (2.1) 

is analytic in S, and is equal to k da/ dn for - 1 :5 Z :5 1, 
where k is the barycentric momentum and da/ dn the 
differential cross section. If experimental values of the 
differential cross section are known, one may always 
construct a function a(z) which is analytic in S and which 
fits the experimental data. Consequently, we regard the 
analytic function a(z) as given, and seek to find a func
tion fez), analytic in S, which obeys (2.1) and the uni
tarity condition. For the work of this and the following 
section, we require that a(z) be free of zeros in S. One 
may then define g(z) = [a(z)]1/2, and define an analytiC 
phase function ¢(z) by 

fez) = g(z)ei</J(z). (2.2) 

The unitarity condition, stated for the physical region 
- 1 :5 Z :5 1, is 

1 1 2,.- g(u)g(~) I (z ; 1]) 
sin¢(z) = - f du J dw ei[</JW-</J(u)] + ---, 

4n -1 0 g(z) g(z) 

where (2.3) 

~ = zu + [(1 - z 2)(1 - u 2)]1/2 cos W (2.4) 

and 
00 (1 - 1]2) I(z;1]) = ~ (21 + 1) __ I Pz(z). 

1=0 4 
(2.5) 

The series (2. 5) is assumed to be uniformly conver
gent in S, so that I (z) is analytic in S. When g and I are 
given, Eq. (2. 3) may be regarded as an integral equation 
for ¢(z), - 1 :5 Z :5 1. Continuous solutions of this equa
tion were discussed in Ref. 1. We shall now prove that 
an analytic solution of (2. 3) exists by applying a fixed 
point theorem in a certain Banach space e of analytic 
functions. Let T C S be the interior of a unifocal ellipse 
of semimajor axis z ~ < z o' We define the Banach space 
e of functions lP(z), defined and analytic in T,real on the 
real axis, and such that 

IllPll = sup IlP(z)1 < c(). (2.6) 
ZET 

Note that the scalars of the Banach space are re
quired to be real numbers. For the proof that e is com-
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plete with respect to the norm (2.6), see Ref. 6, Vol. 1, 
Theorem 7.10.2, p. 193. 

We abbreviate (2. 3) as 

sin¢ = B(¢) + g-11 (1/) (2.7) 

and consider Band g-11 at complex z. We show that the 
integral operator B mal?s the space e into itself. Let 41 
belong to e; then 1= ge "P is analytic in T, and the Legen
dre series converges in T. Now choose a z E Tin Eq. 
(2.3), and note that the Legendre series for the functions 
I*(u) and I(C) which occur in (2.3) converge throughout 
the region of integration. 7 We may then integrate term 
by term, and use the addition theorem for Legendre 
polynomials to obtain 

1 00 

B(¢) = -() 2:; (21 + 1)llz 1 2 pz (z), 
g z z=o 

where 
1J1 Iz (41) ="2 -1 dx.Pz (x)g(x)e iq,(x). 

(2.8) 

(2.9) 

We may employ the Cauchy representation of geiq" 
with a contour aE which is the boundary of an open uni
focal elliptical domain E of semimajor axis z ~ < z O. 
Upon introducing the Cauchy representation in (2. 9) and 
reversing integration order, we obtain 

1 
liz (¢)I::s -1 dzIQz(z)lIg(z)le 'Im q,(z), 

21T ilE ' 
(2.10) 

where Q z is the Legendre function of the second kind. A 
standard bound on the Q z yields 8 

Ilz(¢)I::sMe- AZ sup Ig(z)le11q,11, 
zeaE 

t. = In[z~ + (z~2 - 1)1/2]. 

(2.11) 

(2.12) 

The bound (2. 11) implies that the series (2. 8) con
verges in an open ellipse of semimajor axis 2z~2 - 1, 
and consequently represents an analytic function in that 
region. Since we may choose 2z~2 - 1 > zO' the function 
B is analytic in S, and hence analytic and bounded in T. 

Note that, whereas the integrand of the representation 
for B in (2. 3) does involve a branch cut in z from - 1 to 
1, the integral does not. The estimate of the Legendre 
sum (2. 8) proves that this branch cut is absent from B. 

In order to apply Schauder's fixed point theorem,9 we 
define V, a closed convex subset of e: 

V = {¢: 41 E e, sup I sin¢(z)l::s b < I}. (2.13) 
zeT 

To see that V is convex, define x = 2Re¢, y = 2Im¢. 
Then the inequality which specifies V is 

coshy - cosx::s 2b 2 • (2.14) 

In terms of the variables coshy and cosx, this region 
is a triangle. By checking signs of derivatives, one can 
show that the corresponding region of the x-y plane is 
convex. The region is inscribed in the rectangle 

sin IRe¢1 ::s b, sinh IIm¢1 ::s b. (2.15) 

A graph of its boundary is shown in Fig. 1, for b 
slightly less than 1. 

We apply Schauder's theorem to the mapping A, de
fined by 

A(¢) = sin-1 [ B(¢) + g-11 (1/)]. (2.16) 
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Fig. 1 The boundary of the domain specified by the Inequality (2. 14) 
for a value of b slightly less than 1. ' 

The theorem asserts that if A is a continuous mapping 
of V into a compact subset of itself; then there is at 
least. one solution in V of the unitarity equation 41 = A(¢). 
We first show that A maps V into itself provided band 
sup Ig-11 I are sufficiently small. If 41 E V, it follows 
from (2.3) and (2.15) that 

IB(¢) + g-1I(1)1 ::s JX(b) + K, 

where 

J = sup I ~ J 1 du f 2"dw g(u)g(~) I 
zeT 41T -1 0 g(z) , 

K = sup Ig-1(z)I(z;17)I, 
zeT 

and 

X(b) = exp(sup IIm¢(z)l) ::s exp(sinh-1b) 
zeT 

(2.17) 

(2.18) 

(2.19) 

= b + (1 + b2)1/2. (2.20) 

Let us restrict g and I to satisfy the condition 

J[b + (1 + b2)1/2] + K::s b. (2.21) 

We choose the sheet of the inverse sine in (2.15) so 
that sin-10 = O. Since b < 1, (2.19) implies thatA(z;¢) 
is analytic in T and A(V) C V. 

The continuity of A(¢) is obvious, and it remains only 
to show that A(V) is compact. The compactness follows 
immediately from the following10: 

Theorem: Let {It-'n (z)} be a sequence of functions 
analytic in a domain S, such that 

on every compact subset U of S. Then there is a sub
sequence {It-'n k (z)} which converges uniformly on every 
compact subset of S to a function which is analytic in S. 

Let {It-'n(z)} be a sequence of functions in V, and let 
It-'n (z) = A(z ;¢n)' The functions It-'n(z) are analytic in the 
domainS,and I It-'n(z)1 ::sM,forz E U,where Uis any 
compact subset of S (in fact, the functions are even uni
formly bounded on any compact subset of the bigger 
ellipse of semimajor axis 2z~2 - 1). According to the 
theorem, there is then a subseqence {It-'nk(z)} which con-
verges uniformly on T (the closure of T) to a function 
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1/I(z) which is analytic in S. It is easy to see that 1/1 E V, 
and that 111/1 -1/111 tends to zero. Hence, A(V) is com-

nk 
pact. We conclude from Schauder's theorem that there 
is at least one solution of the unitarity equation in the 
set V, if I and g obey the condition (2.21). 

To clarify the restriction on J and K implied by 
(2.21), we write it as 

J[1 + (1 + 1/b2)1/2] + K/b :s 1. (2.22) 

Since the left side of (2. 2) is monotonically decreas
ing with b, the inequality can be satisfied for some 
b < 1 if, and only if, 

J(1 + 21/2) +K < 1. (2.23) 

For the real-variable formulation of Ref. 1, quantities 
analogous to J and K were defined as suprema over 
[- 1,1]. If one replaces suprema over T by suprema 
over [- 1,1], a sufficient condition for existence of a 
solution real and continuous on [- 1, 1] is J + K < 1. 

By consideration of the Frechet derivative of the 
operator equation (2.16), one establishes that A(cJ» is a 
contraction mapping 9 of V into itself if, in addition to 
(2.23), one has 

2JX[1 - (JX + K)2]-1/2 < 1. (2.24) 

A simple sufficient condition upon J and K to guaran
:ee (2. 24) for any b < 1 is 

5J2(1 + 21/2)2 + 2KJ(1 + 21/2) + K2 < 1. (2.25) 

For sufficiently small J and K the conditions (2.23) 
and (2. 25) are satisfied. When these conditions are met, 
cJ> = A(cJ» has a unique solution in V. Furthermore, the 
Frechet derivative Fcp(cJ>o) of F(cJ>, 7/) = sincJ> - B(cJ» -
g-11 (7/) has an inverse on e provided cJ>0 E V. We can 
then apply the implicit function theorem, as in Ref. 1, 
Sec. 6, to prove that the unique solution cJ> in V varies con
tinuously as the elasticities are changed within the 
limits implied by (2.23) and (2.25). Thus, the continuum 
ambiguity perSists in the present formulation of the pro
blem. As was remarked in Ref. 1, the constraint of the 
optical theorem does not remove the continuum ambi
guity; see also Sec. 3 of the present paper. 

3. CONTINUUM AMBIGUITY WHEN THE DISPERSIVE 
PART HAS ZEROS 

The operator F, defined by 

F(cJ>, I) = g[ sincJ> - B(cJ»] - I (3.1) 

maps the space e into itself. The inelastiCity term I, de
fined in Eq. (2. 5), will be written as 

ao 

I(z) = ~I1PI(Z), (3.2) 
1=0 

II = (21 + 1)(1 - 7/¥)/4. 

We are interested in the dependence on I of the solu
tion cJ> of the unitarity equation: 

F(cp(I) , I) = O. (3.3) 

If cJ> is continuously differentiable with respect to II' it 
must satisfy the differential equation 

dcp 
F - + F[ = O. 

cp dII I 
(3.4) 
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When written out explicitly, this equation reads as 
follows [we suppress the variable lin cJ>(z; I)]: 

dcJ>(z) i 1 211 
g(z) coscJ>(z) - + - J du J dw 

dII 211 -1 0 

. dcJ>(u) 
g(u)g(~)e l[cpW-Cp(U)] __ = ~ (z). 

dII 
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(3.5) 

Let us regard (3.5) as a linear integral equation for 
dcJ>/ dII' We shall show presently that the integral 
operator is compact on e, if cJ> E e. Equation (3.5) is of 
Fredholm type on e, therefore, provided coscJ>(z) has no 
zero for z E T. If coscJ> has a zero, Eq. (3. 5) is analo
gous to the "linear integral equation of the third kind", 
studied recently by Bart and Warnock. 11 By an equation 
of the third kind we mean an equation of the form 

1 
a(z)h(z) + J dy K(z,y)h(y) = b(z), 

-1 
(3.6) 

where a(z) has a zero in the domain where h(z) is de
fined. In general, the Fredholm theorems do not hold for 
an equation of this form, because of the zero of a(z). In 
Ref. 11, it was shown that the Fredholm theorems could 
be retained (under certain continuity conditions on a,K, 
and b) provided that one seeks solutions in an appro
priate space Dr of generalized functions. The space Dr 
contains continuous functions, but the solution h(z) will 
be continuous only in the special case in which the in
homogeneous term b(z) satiSfies a linear constraint. 

By analogy with the work of Ref.H, we expect that the 
operator Fcp of (3.4) wBI not have an inverse when 
coscp(z) has a zero in T. The equation 

(3.7) 

may still have a solution 1/1 in e, however, if ~ is appro
priately constrained. The inhomogeneous term in (3.4) 
will not meet the constraint, in general. We are then led 
to consider the variation of two or more of the II' For 
that purpose it is convenient to set up a differential 
equation in which one of the II is conSidered as a depen
dent variable. Through solution of the differential equa
tion, the dependent II will automatically be determined so 
as to satisfy the constraint. 

Henceforth, let X denote the dependent inelastic term, 
say 1m , and let i\ be another inelastic term, II ,which we 
shall vary independently. We now denote F of (3.1) by 
F(cJ>, X, i\) and attempt to determine cp(>..) and X (i\) to 
satisfy the equation 

F(cJ>(i\) , X (i\), i\) = O. (3.8) 

We suppose that there exists a solution (cpo, XO) of 
the unitarity equation for i\ = i\ 0, with a simple zero of 
the real part of f lying in the interval (- z 0' z 0): 

(3.9) 

coscp·O(xo) = 0, COScpO/(XO) "" 0, -zo < %0 < zo, 
(3.10) 

0< X < (2m + 1)/4. (3.11) 

We also suppose that cJ>0 is analytic in S, that coscpO(z) 
has no other zero in S, and that P m(XO) "" O. Later, we 
shall drop the requirement that there be only one zero, 
located on the real axis. 

We first apply the impliCit function theorem 9 to deter
mine conditions under which (3.8) has a solution for i\ 
close to i\o; of course, one is interested in a solution 
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which approaches (cf>0, XO) continuously when X tends to 
XO. Define 1/1 = (cf>, X) E e x R, R being the real line. We 
abbreviate F(cf>, X, X) as F(I/I, X) and note that, by Sec. 2, 
F maps e x R x R into e; the second R refers to the 
real parameter X. Let us recall the implicit function 
theorem 9: 

Let X, Y, and Z be Banach spaces, and suppose that F 
maps a neighborhood n of (1/.10, A 0) E Y X X into Z, and is 
continuous at (1/10, X 0). Also, suppose that 

(1) F(l/Io,XO) =0, 

(2) the Frechet derivative FIJi (1/.10, A 0) exists in n and is 
continuous at (1/10, X 0), 

(3) F~(I/Io, X 0): Y ~ Z has a linear inverse, 

F;1(I/I O ,XO): Z ~ Y. 

Then there exists a function 1/1 (X) ,defined on a cer
tain neighborhood G C X of X 0, which maps G into Y, 
and such that 

(a) F(I/I(X),X) = 0, X E G, 

(b) I/I(XO) = 1/10, 

(c) I/I(X) is continuous at XO. 

Furthermore, 1/1 is unique in the sense that any other 
function with the above properties coincides with 1/.1 if 
Ilx-xoll < o,for some 0 > 0. 

We identify e x R with Y, R with X, and e with Z. It 
is seen easily that the unitarity operator F(I/I, X) meets 
all of the conditions of the impliCit function theorem, 
save condition (3). We must make one further assump
tion to be sure that (3) is satisfied. Condition (3) will be 
met if the following equation has a unique solution (h, k) 
in e x R for every right side ~ E e: 

(3. 12) 

We write out (3.12) as an explicit integral equation: 

. 1 211 
g(z) coscf>0(z)h(z) + -2

Z J du f dw 
11 -1 ° 

fO(~)fO*(u)h(u) -P m(z)k = ~(z), 

where fO(z) = g(z) exp[icf>0(z)]. We also make use of 
(3.12) evaluated at x o: 

(3.13) 

;11 .C du J:" dw fO(~o)fo*(u)h(u) -P m(xO)k = Hxo)' 
(3.14) 

Since we have assumed P m(xO) '" 0, we may solve 
(3.14) for k and substitute in (3. 13) to obtain 

i J 1 J211 ~Jom - [Pm(z)/Pm(XO)]JO(~o 
h(z) + - du dw ----=---"''--''------=--j 

21T -1 ° g(Z) coscf>0(z) 

Hz) - [Pm(z)/Pm(xo)]Hxo) 

g(z) coscf>0(z) 

O*(u)h(u) 

(3.15) 

Our procedure will be to show that (3. 15) is a regular 
Fredholm equation in e. We shall then make the addi
tional assumption that the corresponding homogeneous 
equation has no nontrivial solution. Equation (3.15) will 
then possess a unique solution h(z) in e. If k is obtained 
by (3.14) in terms of this h, we see [by retracing the 
steps that led to (3.15)] that the pair (h, k) satisfies 
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(3.12). Furthermore, this solution of (3.12) is unique in 
e XR. 

To show that (3.15) is a regular Fredholm equation in 
e, we first note that its right side belongs to e. It re
mains only to show that the integral operator appearing 
on the left side is completely continuous (compact)9 on 
e; namely, that it maps any bounded set in e into a com
pact set in e. Let K denote the integral operator, and 
let {I/.In } be a bounded sequence of functions in e: 
I/.In E e, III/Inil ~ M. To show that the set of Kl/ln is com
pact, we shall apply the theorem on compactness of sets 
of analytic functions quoted in Sec. 2.10 We have merely 
to demonstrate tha!,.the Kcf>n are analytic in S and uni
formly bounded in T. The function Kcf>n may be written as 

2i 00 t Pm (z ) ~ * 
( ) 

,h0( ) L: (2l + 1) Pz (z) - -P ( ) PI (xo) fP(f° cf>n)/' 
g Z cos,/" Z 100 m Xo 

(3.16) 
The series converges uniformly in S to a function 

bounded uniformly with respect to n, as is seen from 
estimates such as (2.11). The series thus represents a 
function analytic in S with a zero at xo' Furthermore, the 
derivative of the function at X o is uniformly bounded 
with respect to n. Th~, the Kcf>n are analytic in Sand 
uniformly bounded in T. 

Thus, we have established that (3.15) is a Fredholm 
integral equation in the Banach space e. The solution 
of (3.12) will be unique unless the kernel K has - 1 as an 
eigenvalue. We have ruled out this latter possibility by 
assuming that the homogeneous equation, h + Kh = 0, has 
no nontrivial solution in e. It follows from the impliCit 
function theorem 9 that there is a solution [1/.1 (X), X (X)] of 
(3.8) for X sufficiently close to AO. In other words, we 
have constructed a continuum of solutions of (3.3) near 
a solution cf>0, for the case in which coscf>0(z) has one 
linear zero at a real point X o E T. Consequently, there 
exists a continuum of unitary scattering amplitudes 
f = gei</J, all corresponding to a given cross section, 
which are obtained by varying the inhomogeneous term 
I. In contrast to Sec. 2, the variation of the inhomoge
neous term cannot be arbitrary; but it must be subject 
to one constraint. 

For the case in which all but a finite number L of the 
Legendre coefficients of the initial amplitude vanish, it 
follows from (3.16) that the kernel K is of rank L - 1. 
With just sand p waves nonzero,K is of rank 1 and 
never has eigenvalue - 1. 

If K has - 1 as an efgenvalue, then X = Xo may be a 
bifurcation point of the equation, i.e., two or more solu
tion curves [CP(A), X(X)] may pass through such a point. 
Such a point is not necessarily a bifurcation point, how
ever; it could happen toot a solution curve would end at 
AD. In any case, it should be illuminating to investigate 
points where K has eigenvalues of - 1. 

Since the function coscf>(z) is real-analytic in z, its 
zeros are either real or occur in conjugate pairs. It is 
straightforward to treat the case in which cosCPO(z) has 
a finite number of zeros in S. We find that for every 
(simple) zero of coscpo, one must constrain the varia
tion of one of the inelasticities II in solving (3.3) with a 
given cross section. 

The discussion up to now has not included any experi
mental information on the total cross section. A 
measurement of the differential cross section and the 
total cross section gives us the total inelastic cross 
section, 

00 

Gin = 0tot - Gel = L: (2l + 1)11 , 
I~O 

(3.17) 
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We may maintain (3.17), the constraint of the optical 
theorem, while simultaneously solving Eq. (3. 8). The 
relation (3. 17) is a linear constraint on the variation of 
the elasticities, and is independent of ¢ and z. The dis
cussion now parallels that of Eq. (3. 8), except that, for 
the case in which cos¢ has one zero in T, two elasticities 
must be taken as dependent variables instead of one. The 
continuum ambiguity is thus present, even when the op
tical theorem constraint is satisfied. This is in contrast 
to the analysis involving a finite number of waves, which 
is given in Ref. 5. 

In order to solve Eq. (3. 8) numerically, it is appro
priate to consider an initial value problem based on the 
differential equation 

(3.18) 

Given the initial values ¢o and X 0, one may calculate 
the solution curve [¢(A), X(A)] by standard methods for 
numerical treatment of ordinary differential equations. 
The solution curve will extend to the first singularity of 
the Frechet derivative F1/!' At a singularity, numerical in
vestigation of possible bifurcation phenomena would be 
required. 

4. THE ABSORPTIVE PART MAPPING 

In previous sections we considered a mapping of the 
phase function ¢ and re<@.ired that the scattering am~i
tude f have no zeros in T. Indeed, if f has a zero in T, 
g and ¢ as defined in Sec. 2 need not be analytic in T. 
In order to bypass this difficulty, we write the analytic 
unitarity equation as a mapping of the absorptive part 
A (z) ,defined by 

A(z) = (1/2i)[j(z) - f*(z *)]. (4.1) 

Our approach parallels that of Ref. 4, except that we 
shall work with the integral form of the unitarity equa
tion. 

For a given cross section a(z) and inelastic contribu
tion I(z), both analytic in S, the absorptive part A(z) 
satisfies the equation 

A(z) = B(z;A) + I(z) 

= 41 J1 duJ.21f dw [A(u)A(~) + D(u)D(~)] + I(z), 
11 -1 0 (4. 2) 

where 

D(z) = [a(z) -A2(z»)1/2, (4.3) 

~ is defined by (2.4), and I (z) by (2.5). The scattering 
amplitude fez) = D(z) + iA(z) can be constructed from a 
solution of (4.2). We first show that (4.2) has solutions 
in a regime for which a(z) has no zeros in S and for 
which zeros of D in S are prevented. Then, we will esta
blish the existence of a continuum of unitary, analytic 
amplitudes, allowing the case where a and D do have 
zeros in S. In analogy to Sec. 3, we prove that the solu
tion A varies continuously with respect to the inelas
ticities II; as before, one must place one constraint on 
the variation of the II for each zero of D(z). 

We proceed to apply Schauder's theorem to show that 
Eq. (4.2) has at least one solution in the space e of 
Sec. 2. We shall require that a(z) be analytic in S, and 

inf I a(z) I = m 2 > 0, 
ZES 

(4.4) 
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supla(z)1 =M2. (4.5) 
ZES 

If we require that II A II =s m, then the function D (z) in 
(4.3) is also real-analytic in T. Furthermore, one may 
express B(z;A) as a convergent Legendre series, as was 
done with the analogous integral in Eq. (2.3). From 
straightforward estimates on this Legendre series, it 
follows that B(z;A) is real-analytic and bounded for 
z E S. For an appropriate choice of b, the ball 

V={A:A E e, IIAII =s b, b< m} (4.6) 

is mapped into itself by the operator B + I. If A E V, it 
follows directly from (4.2) that 

IIB(A) + I II =s 2b 2 + M2 + L, 

where 

Consequently, B + I maps V into itself if 

2b2 + M2 + L =s b. 

We may satisfy (4.9) for some b < m if 

[(M2 + L)/m] + 2m < 1. 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

To complete the existence proof, we need note only 
that B + I is continuous on V, and that it maps V into a 
compact subset of V. The compactness is proved as in 
Sec. 2. 

Thus we can guarantee that (4.2) has at least one 
solution in V if condition (4.10) is satisfied. Under 
somewhat more restrictive conditions on a and I, one 
can show that B(z ;A) is a contraction mapping of an 
appropriate ball V into itself, so that (4.2) will have a 
unique solution in the ball V. If follows here, as in Sec. 2 
that the solution in V varies continuously with I. 

In the above analysis, we have assumed that a(z) has 
no zero in S, and we were required to rule out zeros of 
D(z) in T. Here we will relax both of these conditions. 
We now suppose that a solution fez) of the unitarity equa
tion is given, which is analytic in T, and such that D(z) 
has a finite number of zeros inside T. We will show that 
under appropriate conditions, such a solution is one of 
a continuum of solutions of (4.2), all of which correspond 
to the same cross section. The solutions of this conti
nuum are analytic in T;they are produced by a conti
nuous variation of the II' 

Unless zeroes of D(z) in T are specifically excluded, 
one cannot guarantee that the image B(z; A) of A E e in 
(4.2) is analytic for z E T, since D(z) obtained in (4.3) 
may not be analytic in T. We shall consider, instead, an 
operator C(z;A), which is identical with B(A) if D(z) is 
analytic in T. Specifically, we replace A(z) and D(z) by 
their Cauchy integrals over the boundary aE of the 
elliptical domain, E, slightly smaller than T; we define 

1 
C(z;A) = -- i dx i dy K(x,y,z)[A(x)A(y) 

(211i)2 iJE iJE 

+ D(x)D(y)]. (4.11) 

Here,K(x,y,z) is the Mandelstam kernel,12 which is 
represented by the Legendre series 

00 

K(x,y,z) = 6 (21 + 1)Pz (Z)QI (X)Ql (y). 
1=0 

(4. 12) 

The domain E is chosen so that all zeros of D lie in
side it. For any values x and y on aE, it follows from 
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the uniform convergence of (4.12) thatK(x,y,z) is 
analytic in z for z E S. Furthermore, a standard esti
mate of (4. 12) establishes the existence of a constant 
M such that 

IK(x,y,z)1 :'" M, (4.13) 

for all x and y on aE and all z E S. Thus, when a and A 
are bounded on aE, the image C (z; A) is real analytic, 
bounded in S, and thus bounded in T. 

The operator F(A., I), defined by 

F(A, I) = A - C (A) - I, (4.14) 

maps A E e into an element of e if a and I are analytic 
in S. 

Let us examine the variation with I of the solution A 
of 

F(A,I) = 0 (4.15) 

with a fixed cross section a. If the solution A is con
tinuously differentiable with respect to I z , then it must 
satisfy the differential equation 

(4.16) 

The operator ~,unlike the corresponding operator 
F", of Eq. (3.4), is a regular Fredholm operator on e, 
even if D(z) has zeros inSide the ellipse E. SpeCifically, 
FA applied to a function h E e has the form 

where 
1 

C A(Z; h) = 21T2 foE dx foE dy K(x,y,z) 

[ 
D(x) ] x A(x) - -A(y) hey). 
D(y) 

(4.17) 

Note: It follows from (4.16) that if h E e and 
Ilh II :'" b, C A (z ,h) is analytic and uniformly bounded for 
z E S. Thus, by the criterion of Ref. 9, C A is a com
pletely continuous operator on e. 

A solution of (4.15) is a solution of the unitarity equa
tion (4.2) provided that D(z) is analytic inside E. The 
solution A of (4. 15) varies continuously with the II' but 
the corresponding D(z) is analytic inside the domain E 
only for appropriately constrained variations of the I z• 
Thus, the situation is similar to that encountered in 
Sec. 2, even though an integral equation of the third kind 
does not arise in the present formulation. 

For our given scattering amplitude,D(z) = 
[a(z) - A2(z)]1/2 is analytic in T. Consequently; all 
zeros of a(z) - A2(Z) in T are of even order. If we 
solve (4.15) while enforcing the constraint that zeros 
remain of even order, then the solution of (4.15) will also 
be a solution of the unitarity equation (4.2). For Simpli
city, we discuss the case in which there is only one real, 
simple zero Xo of D in E, and assume that a(xo) " O. 
Since a - A2 has a second order zero at x o, we have that 

(4.18) 

and 

a .(xo) - 2[C(xo;A) + I (xo)][ Cz(xo; A) + I z(xo)] = 0, 
(4.19) 
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where the subscript z denotes partial differentiation with 
respect to z. If we enforce (4.18) and (4.19) while vary
ing the inelasticity I and solving (4.15), D will remain 
analytiC in E and A will be a solution of the unitarity 
equation. Let us define g(z) = [a(z)]1I2, such that g(xo) = 
C(xo) + I(xo)' Then g(z) is analytic in z in a neighbor
hood of xO' We can express the above constraints as 

g(xo) - C(xo;A) - I(xo) = 0, 

gz(xo) - C.(xo;A) - I.(xo) = O. 

(4.20) 

(4.21) 

To impose (4.20) and (4.21) while varying I in (4.15), 
we define the independent variable.\. = II and the depen
dent variables A(.\.) , Xo = /l(.\.) , and 1m = X(.\.) , where 
Pm(xO) " O. The system of equations (4.15), (4.20), and 
(4.21) is viewed as a mapping of e x R x R into 
e x R x R, where A('\') E e, X(.\.) E R, and /l(.\.) E R, and 
it is represented as 

F(l)f('\'),,\,) = 0, (4.22) 

where 0 is the zero element of e x R x Rand l)f('\') = 
[A(.\.), X (.\.), /l(.\.)]. For our initial solution of the uni
tarity equation, l)fo = [AO, I:?" xo], we have 

F(l)fO, .\. 0) = o. (4.23) 

We shall apply the implicit function theorem to esta
blish that there is a solution \}I(.\.) of (4.22) for.\. suffi
Ciently close to .\.0. This solution varies continuously 
with.\.. It is trivial to verify all but one of the supposi
tions of the implicit function theorem. The one condition 
which is not obviously satisfied is that the Frechet deri
vative F .. evaluated at \}Io have an inverse. That is, we 
must show that the set of equations for (h, kl' k 2 ) E 

e xR x R, 

(4.24) 

has a solution for arbitrary (~, ~ 1, ~2) E e x R x R. In 
explicit form the equations (4. 24) are 

- CzA (xo,AO)h -P~(xO)k1 

(4.25) 

(4.26) 

+ [gzz(xo) - Czz(xo,AO) - I~Z<xo)]k2 = ~2' (4.27) 

Since by assumption P m(xO) " 0, we may use the 
second of these equations to eliminate k1 from the first 
equation. Thus, we obtain 

h(z) - {CA (z ,A 0) - [p m(z)/p m(xO)]CA(xo,A O)}h 

= Hz) - ~1P m(z)/p m(xO)' (4.28) 

Since C A (z; A 0) is a completely continuous operator 
on e, (4.28) is a regular Fredholm equation. We assume 
that (i) the homogeneous form of (4.28) has no non
trivial solution, and (ii) the coefficient of k2 in (4. 27) is 
not zero [i.e., the zero of D(z) is of first order]. Under 
these assumptions, Eq. (4. 24) has a unique solution for 
any right side. It then follows from the impliCit function 
theorem that Eq. (4. 22) has a unique solution in 
e x R x R in a neighborhood of .\. 0 , such that \}I (.\. 0) = l)fo. 
The absorptive part A(.\.) , the zero location /l(.\.) , and the 
dependent elasticity X(.\.) all vary continuously with the 
independent elasticity.\. in a neighborhood of .\.0. 
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It is straightforward to generalize the implicit func
tion arguments to the cases in which (1) D(z) has more 
than one zero in T, (2) D(z) has complex zeros, (3) 
D(z) has zeros of higher order, and (4) D and a have a 
zero at the same point. 

5. MAPPING OF THE SCATTERING AMPLITUDE 

In the previous sections we have considered the uni
tarity equation as a mapping of the space e of real
analytic functions into itself. Here we will briefly 
examine the unitarity equation on the Banach space a == 
e x e of functions fez) with the properties: (a) fez) is 
analytic inSide the domain T, (b) 

Ilfll = sup I f(z)l. (5.1) 
ZET 

The function fez) can be decomposed into its disper
sive and absorptive parts,D(z) and A(z), which are real
analytic functions, as follows: 

D(z) = (f(z) + f*(z *)]/2, 

A(z) = (f(z) - f*(z *)]/2i, 

fez) = D(z) + iA(z). 

(5.2) 

(5.3) 

(5.4) 

Note: the elements of a are the ordered pairs (D, 
A). Even though fneed not be real-analytic, the scalars 
for the Banach space a are real numbers. 

In this section we express the unitarity equation as a 
mapping of the scattering amplitude f(z); here we shall 
allow zeros of the cross section a(z) as well as zeros 
of D(z) in T. In the spirit of Sec. 3 our treatment will 
involve an integral equation of the third kind. The uni
tarity equation for the scattering amplitude is equivalent 
to 

FU,I) -= j2(z) - a(z) - 2if(z)[B(z;f) + J(z)] == 0, (5.5) 

where B(z;f) is the integral operator of (4.2) and I(z) is 
given in (2. 5). The operator F maps the space a into 
itself. As in the previous sections, we will show that a 
given solution of (5.5), f o(z) E a, is a member of a conti
nuum of solutions, corresponding to the same cross 
section a(z), and produced by variation of J (z). 

As before, the existence of the continuum is established 
via the impliCit function theorem. The Significant pre
mise for the theorem is that an appropriate Frechet 
derivative have an inverse. The Frechet derivative of F 
with respect to f evaluated at f 0 is 

FfU o)h = 2(f o(z) - i(B(z,j 0) + JO(z)]h 

- 2if o(z)B f(z,jo)h, (5.6) 

where B fez ,f)h is expressed in terms of the dispersive 
and absorptive parts of h (hD and hA' respectively), as 

1 J 1 J 2n B f (z,jo)h=271 _ldu 0 dw[Ao(y)hA(u)+Do(y)hD(u)]. 

(5.7) 

B fez ,j 0) is a completely continuous operator on the 
space a for fOE a. At a solution of (5.5), 

Do(z) =fo(Z) - i[B(z,fo) + JO(z)]. (5.8) 
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The operator FfU 0) has an inverse on a unless 
Do(z) vanishes at some point Zo E T, in the latter case 
FfU 0) is an integral operator of the third kind. When 
Do(z) or ao(z) does have a zero in T, however, there 
exists an inverse of an appropriate extension of FfU 0) 
on an augmented space. 

For simplicity, we describe the ...£ase in which Do(z) 
has only one real, simple zero in T, at an interior point 
x o, such that a(xo) 7- O. One may easily extend the argu
ment to treat all of the cases of Sec. 4. As in Sec. 3, we 
take on inelasticity parameter J m = X [chosen such that 
p m(xO) 7- 0] to be a dependent variable. We are led to 
consider the following Frechet derivative operator, which 
maps (h, k) in a x R into ~ in (t: 

(5.9) 

This operator does have an inverse which maps (t into 
(t x R ,under reasonable restrictions which are analo
gous to those of Sec. 3. The impliCit function theorem 
assures the existence of a solution f(I) E a of (5.5), such 
that f([O) = fO. This solution varies continuously with 
respect to [ , when the variation of one particular in
elasticity, [ m' is constrained. 

The considerations of this section allow us to take the 
unitarity integral B(z,j) over the physical region, even 
if a(z) has zeros in T. However, the elements of the 
Banach space a are pairs of real-analytic functions and 
third-kind integral equations are encountered. 
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Scattering from a random rough surface: Diagram 
methods for elastic media 

John A. DeSanto 
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In a previous paper [J. Math. Phys. 13, 1903 (1972)], Feynman diagram methods were used to 
construct the Green's function and its first two moments for scalar wave scattering from a random 
rough surface with a Neumann boundary condition. This paper extends these formal diagram 
methods to the calculation of the Green's function and its first two moments for an elastic half-space 
bounded by a random rough surface considered as a free boundary. The surface height is a single 
valued bounded function with Gaussian statistics. The Dyson and Bethe-Salpeter equations, for the 
mean and second moment respectively, of the Green's function, are derived. Some simplifications of 
these integral equations and some examples are presented. 

1. INTRODUCTION 

A method to calculate the Green's function and its 
first two statistical moments for the scalar wave equa
tion in a half space bounded by a random rough surface 
was previously presented. 1 The boundary was considered 
to be a hard or Neumann boundary, and the surface height 
to be a single valued bounded function with Gaussian 
statistics and zero mean. The Green's function was 
applied to a scattering problem for plane wave incidence 
on the surface. The method used to discuss the Green's 
function was in terms of Feynman-like diagrams ana
logous to those used in random volume scattering prob
lems.2 Here we extend these formal diagram methods 
to the calculation of the Green's function and its first 
two moments for an isotropic elastic half space bounded 
by a random rough surface. The surface is treated as a 
free boundary, i.e., one having zero stress. As in Ref. 1, 
the method can be generalized to calculate higher order 
moments of the Green's function, but we only consider 
the first two. 

The method is straightforward. The deterministic 
surface Green's function is obtained by formulating an 
integral equation in Sec. 2. The Born term and kernel 
of the integral equation are expressed in terms of the in
finite space elastic Green's function which is known. 3 

To formulate the integral equation requires a boundary 
condition and we choose a zero stress (free) boundary 
for simplicity. Previously, Case and Hazeltine4 cal
culated the elastic half space Green's function for a 
flat surface and applied their result to the problem of 
elastic radiation from a small source in the earth's 
interior. Also, Karal and Keller 5 have considered 
elastic wave propagation as a random volume scattering 
problem. Their aim was to calculate effective wave 
numbers. Our results in this section can be considered 
as a rough surface generalization of the Case-Hazeltine 
results, and reduce to the latter in the flat surface limit. 

Fourier methods and a gauge condition argument are 
used in Sec. 3 to define an integral equation in momen
tum- or k-space for the surface Green's function and 
an auxiliary function related to it which is used in the 
actual calculations. The kernel of the integral equation 
can be factored into propagator, vertex and interaction 
components and k-space diagram rules are associated 
with each component. It is shown how to express the 
field Green's function in terms of the surface Green's 
function, and a general reduction method is derived 
which expresses the outgoing scattered field in terms 
of the incident field. This is also used in the discus
sion of the mutual coherence function in Sec. 4. 

The main discussion of the paper, that of a random 
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rough surface, is presented in Sec. 4. The statistical 
arguments are the same as those for the scalar case in 
Ref. 1, and the diagram rules are accordingly extended. 
A coupled set of Dyson type integral equations is obtain
ed for the mean of the Green's function. Its solution 
represents the coherent part of the source field. A 
coupled set of Bethe-Salpeter type integral equations is 
obtained for the mean of the square of the Green's func
tion and it is shown how this quantity can be related to 
the intensity. Simplifications of both sets of integral 
equations result from the translational invariance of 
the statistical problem, and lowest order examples of 
coherent and incoherent diagrams are presented. 

Finally, in the Appendix, we calculate a kernel func
tion which is used in the derivation of the integral 
equation in Sec.2. 

2. SURFACE GREEN'S FUNCTION 

The problem is to calculate the Green's function r in 

(X, X') which satisfies the inhomogeneous elastic dif
ferential equation 

(2.1) 

in the region V indicated in Fig. I. The A * operator is 
defined by 

[A*r(x,x')l;n = p,°mamrin(x,x') 

+ (.\ + p,)a;omr mn(x,x'). (2.2) 

The region V is an isotropiC elastic half space charac
terized by the two elastic constants .\, the Lame modu
lus, and p" the shear modulus. 3 V is geometrically 
specified by z 2: h(x.L) where h(x.L) is a random variable 
and x.J.. the transverse component of a 3-vector x = (x.L' 
z). The abbreviation 0 i == ajox; is used, the subscripts 
i, m, n = 1,2,3, the summation convention is assumed, 
ko is the free space wave number, 0 in the kronecker 
delta, and o(x) the three-dimensional Dirac delta func
tion. In addition, r in satisfies a zero stress (free) 
boundary condition when z = h(x.J..)' This is specified 
later. 

FIG.1 Random rough surface z = h(xJ bounding an isotropic elastic 
half space V specified by Lam<! constants A and j.! • 
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The infinite space Green's functions r?n±(x,x') = r?.: 
(x - x') satisfy the same equation 

[~*rO(x, X')]ij + k~r9j (x, x') = - ° ij o(x - x') (2.3) 

but with outgoing (+) or incoming (-) wave boundary 
conditions as Ix - x' I --7 <XI. We have dropped the + and 
- superscripts for simplicity. They will be used later 
as necessary. The explicit representation of r?j (x) is 

where Gb· 1 are the scalar infinite space Green's func
tions 

(2.5) 

and the transverse (t) and longitudinal (l) wave numbers 
are given by 

k~ = kUj.L, k¥ = k~/(A + 2j.L). (2.6) 

Forming the quantity 

r?j(x',x)[~*r(X,X")]in - [~*rO(x',x)Lj rin(x,x"), 

it is possible to write the identity 

r jn (x, x") o(x' - x) - r~n (x' ,x) o(x - x") 

= ° 1 {r?j (x', x)[ Tr(x, x")]/i n 

- [TrO(x',x)]/ij rin(x,x")}, 

where the traction operator T is defined as 

(2.7) 

[Tr(X,X')]lin = j.LOlm{Omrin(X,X') + air mn(X,X')} 

+ MilOmr mn(x,x'). (2.8) 

Multiplying (2.8) by the unit step function 8(z' - h(x~» 

8(z) = { 
1, 

0, 

z>o 

z < 0, 

integrating the result over all space, doing a partial 
integration on the resulting integral term, and using the 
free boundary condition 

(2.9) 

where Xs is a 3-vector evaluated on the surface x = 
(x.L' h(x .L», yields the result s 

rfn (x', x") = r~n (x', x") 8 (z" - h(x1» 

- J d2X.LNI(X.L)[TTO(x',xs)]/ij 

x rin(xs'x"), 

(2.10) 

where T' means differentiation on the primed coordinate, 
the normal (into V) defined by NI(x.L) = 013 - 01.Lh(X.L) as 
in (2.9), the integration over the full surface and the 
discontinuous Green's function rfn defined b~ 

(2.11) 

It is possible to write the kernel in the integral term 
in (2.10) as (see Appendix) 

N1(xJ[T'rO(x' - Xs)]lij 

= - t o(x~ - x .L)e:(z' - h(X~»{Oij - 0i30j.L h(xJ 

- AOj 30 i.Lh(X.L)} - R ji(X', x s )' 
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where A = A/(A + j.L),E(z) = 8(z) - 8(-z),andRji is 
defined as 

Rji(x',x
S

) = (21Tt3 J d3ke ik ' (x'-xS)Rjim(k)N m(x.L) 

with (A6; 7) 

iRjim(k) = Gb(k) {Oij [km1. + Om3p~k~ ~ k~)] 

+ 0jm [ki.L + Oi3P~k~ ~ k~) J} 
+ Gb<k)Mim[kj1. + OjIlP(k¥ ~ k~)] 
- 2[Gb(k) -Gb<k)]kikjkmlk~ 

+ 20i30j30m3 P (k~ - k¥) 
k~ k3' 

where the symbol P stands for the Cauchy principle 
value distribution. 

(A8) 

Substituting (A5) into (2.9) and letting x' --7 x~ through 
positive Zl values yields the result 

r.in(x~"x") = r~n(x~.,x") + J d2X.LRji(X~',Xs) 
x Uip(X.L)rpn(xs'x"), (2.12) 

where we have defined the surface Green's function rjn 
as 

Qjm(X1.) = HOjm + 0m30j.Lh(X.L) + M j3 0m.Lh(X.L)} (2.14) 

with the inverse 

r mn(x~,x") = U mp(x~)rpn(x~.,x"), (2.15) 

Uip(X.L) = 2(Oip - 0i3 0 P3) 

+ 2{1 - A[o 1.h(x.L) )2}-lN i (X.L) 

x {ANp(x.L) + (1- A)Op3}' 

(2.16) 

Equation (2.12) is the integral equation for the sur
face Green's function which we deal with in the next 
section. 

The flat surface limit o{ (2. 12) is found by setting 
h = 0 in (2.12), noting that N m(x1.) = 0m3' U mp = 20 mp' 
and that in (A6) for R . i it is possible to do the k:3 inte-' 
gration to yield J 

Rjj(X~"xs) = Rji(x~,x.L) 
== (21T)-2 Jd2k eik1.·(xJ.-X1.)R .(k ) 

.L j' .L' 

where K~, t = k~. t - k~. The integral equation resulting 
from (2.12) can be Fourier transformed and agrees 
with the result of Case and Hazeltine.4 This is readily 
apparent if we note that R . i (k1.) = - HQ. (k) in the latter's 
notation [Eq. (2. 28) in Ref~ 4]. J' 

3. DIAGRAM AND REDUCTION METHODS 

In order to discuss a diagram notation, it is convenient 
to express rjn(x~" x") as a Fourier transform. Introduce 
the following Fourier transforms in (2.12): 
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P (x' Xlf) - {21T)-6 Jfd3k'd3klfeik,.X~rs (k' klf)e-ik".x" In s" - jn , , 

(3.1) 
rJn{x~,x") = {21Tt6 II d3k'd3k"eik'.xs 

x [(21T)3 0(klf -k')rYn(k')]e-ik".x", (3.2) 

Rji(X~,Xlf) = (21Tt3 I d3keik'(x's-x")Rji(k,xs) (A6) 

with [combining (A7) and (A10)] 

Rji{k,xs) = - iPn{k)Rnjim{k)[om3 - °m.l,h{x.l,)]' 

where the functions P n and R njim are defined by (AU) 
and (A12). Setting the resulting integrand equal to 
zero using the same gauge transformation arguments 
used in Ref. 1, there results the k-space integral equation 

qn(k',k") = (21T)3 o(k' - k")rJn{k') 

+ I d3 kLjp{k', k) rpn{k,k"), (3.3) 

where the kernel L jp is defined as 

Ljp{k', k) = (2;,)i3 P n(k')Rnjim(k') 

x I d2x.l,e iCk-k'),x S[Om3 - 0m.l,h(x.l,)]U;p(X.l,)' (3.4) 

Using (2.16) for U tp' integrating (3.4) by parts and 
dropping any surface terms (see.Ref.1), enables us to 
write 

Ljp{k',k) = Pn(k')Vnjp{k',k)A{k' -k), (3.5) 

where Vnjp(k', k) and A(k) are given by 

- 2i (k' -k) 
Vnjp(k',k) = (21T)3 Rnjtm(k') k; _ k: 

x (OiP - 0i30p3 + (k' -k)i 

X 
A(k' - k)p + (1 - A)(k; - k 3)OP3) 

(k; - k3)2 - A{k~ - k.l,)2 ' 
(3.6) 

Thus (3. 5) has been factored into propagator (P), ver
tex (V), and interaction (A) terms. Equation (3. 7) is the 
same interaction term which appeared in Ref. 1. 

It is convenient to define away the delta function term 
in (3.3) by introducing the 3-index function G~jm via 

rjz(k',k") = (21T)3 o(k' -klf)rJz(k') 

+ (21T)3Pn(k')G~jm(k',k")r~z(k"). (3.8) 

Substituting (3.5) and (3.8) into (3.3) yields the integ
ral equation 

G:"jn(k', k") = V mjn(k', k")A{k' - kif) 

+ I d3kV mjp(k', k)A{k' - k)Pz{k)Gtpn{k, kif). (3.9) 

This is the integral equation we deal with. A diagram 
interpretation can be given to each term in the equation 
similar to that presented in Ref. 1. It is illustrated in 
Fig.2. When elementary diagrams are pieced together 
we must integrate over internal momenta k and re
peated indices, of course, must be summed. 

Once the surface Green's function is known, the field 
or discontinuous Green's function rfn can be found. The 
procedure is to use the Fourier transform 
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rfn{x', x") = (21Tt6 II d3k'd3k"eik,.x'rfn{k',k")e-ik".x" 

(3.10) 
with (2.15), (3.1), and (3.2) in (2.10). Since z', z" > h, 
the kernel of (2.10) has no singularities and can be dif
ferentiated directly. It can easily be seen that, using 
(2.8) and direct differentiation, it is possible to write 

(3.U) 

RJt{X',x s ) = (21Tr3 I d3ketk'(x'-xS)RJtm(k)Nm{X.l,), 
(3.12) 

iRJim(k) = /.L[kmr?j{k) + ktrJm{k)] + Mimkpb(k) 

= G6(k)[o ij k m + Ojmki - 2ktkjkm/k~] 

+ Gb(k)(Mimkj + 2kikjkm/k~). (3.13) 

These latter three equations are presented as an ana
log of the presentation of the kernel in Sec.2. The nota,.. 
tion is similar except for the superscript "0" on the R 
functions. This is to indicate that in addition to the fact 
that (3.13), e.g., can be derived directly, it also follows 
from (A10) through (A12) by putting the prinCiple value 
terms "on-shell," viz. by setting k~ = k~ + kl and k~ = 
k~ + kl in the principle value terms. Using the results 
of this discussion, (2.10) becomes the integral relation 

rfn(k', k") = (21T)3 0(k' - k") rYn{k') 

+ Pn(k') I d3kV~jp(k',k)A(k' -k)rpn(k,k"). (3.14) 

Note that this is similar to the integral equation (3. 3) 
[with (3.5)] for r~n(k',k"). The difference is that we 
have gone on-sheil, Le., have replaced V njp with V~jP' 
We easily get the result 

(3. 15) 

and, in general, using (3.3), (3. 5), and (3.14) we get 

rfn(k',k") = qn(k',k") + Pz(k') I d 3k[VPjp(k',k) 

- VZjp(k',k)]A(k' - k)rpn(k,k"). (3.16) 

Equation (3. 15) follows by putting (3.16) on-shell. 

(0) 

(b) 

(c) 

(d) 

~ n 

~ 
m 'l" ~ ", 

k' -k" 

*k 

-..J.k2Yk >-;0 
kn 

P";-(k) 

FIG.2 Diagram rules for the terms in the integral equations for the 
elastic surface Green's function G~mn' its mean, and the mean 
of its square. They are formally similar to those in the scalar 
case (Ref.l). Parts (a), (b), and (cl were introduced in the 
deterministic discussion and (d) in the statistical part. 
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Using (3.14) it is possible to define a 3-index Green's 
function G:?pu via 

r~z (k', kIf) = (21T)36(k' - kIf) r~z (k') 

+ (21T)3P,,(k')G:?pJk',k")r2z(k"). (3.17) 

Substituting (3.17) and (3.8) into (3.14) yields the 
relation 

Gfmu(k',k") = V~m .. (k',k")A(k' _kIf) 

+ I d3kV~mp(k' ,k)A(k' -k)Pz (k)Gfpu(k,k") (3.18) 

which expresses GD in terms of GS. The coordinate 
space representation of (3. 17) is 

rfz+(x',x") = r~I(lx' -x"l) + (21T)3 

x IId3x 1d3x 2P;(lx' -xli) 

x G:?;u(x1,x2)r2z(lx2 -x"I). (3.19) 

Hence the outgoing (0) scattered field l/IjO)(x') <:an thus 
be expressed in terms of the incident (i) field l/I ~')(x) as 

l/I}O)(x') = (21T)3 IId3x1d3x2P;(lx' -Xli) 

(3.20) 

where we've dropped the Born term in going from (3.19) 
to (3.20) because our interest is only in the scattered 
field. Noting that Ggpu = 0 since vgpu = 0, (3. 20) can be 
written 

l/I~O)(x') = (21T)3 II d3x 1d3x 2[Pi(lx' -x11)Gf; .. (xl'x2) 

+ P2"(lx' -x11)Gg;u(Xl>X2)] l/I~i)(X2)' (3.21) 

It is possible to decompose the outgoing scattered 
field into four components 

l/I~O)(x) = L l/I~O)a.a(x), a,(3 = t, l, 
a.a 

(3.22) 

where t stands for transverse (shear or S-wave) and 1 
for longitudinal (compressional or P wave). The inCi
dent field breaks down into two components, viz. 

l/I~;)(x) = ~ l/I~i)y(x), y = t, l, 
y 

(3.23) 

corresponding to a transverse or longitudinal incident 
field. The two superscripts on the outgoing field com
ponents, e.g., l/I~o)a./3, indicate the ath outgoing field in 
terms of the (3th incident field. 

The expansion of each of the above fields in terms of 
plane wave fields ¢~o)a./3 and ¢(;)r are given by 

(3. 25) 

Here the specifications k z = ~ a and k~ = - K r are 
taken to ensure that l/I(o) and l/I(') are outgoing and inci
dent waves, respectively. If we write the two-dimen
sional representation 

(3.26) 

for the propagators, substitute Eqs. (3. 22) through 
(3.26) into (3.21) in the far field limit, and equate appro
priate terms, the result is 
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",(O)a.a(k ) - Id2k'Ta.a+(k k,)",W/3(k') 't'p .I. - .I. pu .1.'.1. 'f'u .I. , (3.27) 

where, in general (i.e., for both boundary values) 

Ta B±(k k') rri fId3 d3 -ik'xl GD± ( ) ik·.X:! pI. .1.'.1. ="k Xl x 2e apu X 1,X2 e 
z 

- rri GS± (k k') k z = ± K a , - k
z 

apu , k~ = 'foKs' 
(3.28) 

Note that since we are on-shell in (3.28) we are able to 
replace the Fourier transform of GD with that of GS. We 
have also used the notation that 

a = l. 
Hence using (3.22), (3. 24), and (3.27), we can write 

l/I~O)(x) = L II d2k .I.d2k~ejk' XT~uB+ (k.l.' k~)¢~;)B(k~) 
a.B (3.29) 

with the on-shell conditions of (3.28). 
A similar analysis can be carried out for the complex 

conjugate fields and the result is 

l/I~O>*(x) = :B II d2k.l.d2k~e-ik.l.,x.l.e-j2KCJ. 

a.a xTCJ..a-(-k -k,)",(i)6*(k') pu .I.' .I. 't'u .I. • (3.30) 

The field expansions (3.29) and (3.30) will be used 
in Sec. 4 in the mutual coherence function and intensity. 

4. RANDOM ROUGH SURFACE 
Now treat the surface as a centered Gaussian dis

tributed random variable and calculate the first two 
of the statistical moments of rpz(k',k"). From (3.8) 
these are reduced to calculating the moments of G~mn 
(k',k"). This is done via (3.9) whose Born expansion 
shows that to calculate the mean of GS, (Gs) , it is 
necessary to know how to deal with functionals of the 
surface having the general form (nl'~lA(ki»' These were 
discussed in Ref. 1 where it was shown that the nth 
order products could be cluster decomposed as6 

(~1 A(ki~ = jpPrm E1 (mi~~ni~l Ami({k)mi) (4.1) 

with 6{mj} M equal to the sum over all unordered M

element sets {m j}M such that :Bthm i = n and 6j perm 

equal to the sum over all different labelings j of the un
ordered m i element sets {k

J
o } m with j = 1,2, .•. ,n. It 

• j 

was also shown in Ref. 1 that, with the two-pOint cor-
relation function 

r(x.l. - x~) = (h(x .I.)h(x~», 

it was possible to write 

(b A(ki)\ = exp(-! r(O) t k~z)' 
'-1 '/ m~1 

(4.2) 

X (21T)26 (121 km.l.) I n(k1,k2 , •• • ,kn ), (4.3) 

where the In integral is defined as 

In(k 1,···,kn) = I··· Idpl.!. ••• dp(n-1) 
.I. 

{ 

n-1 n-1 
X exp - i :B Pm.l.· km.l. -:B r( Pj.l. - Pj.l.) 

m~ 1 i<j 
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Further it was also shown that each cluster function 
A m could be written as 

A m(k l' •.. ,km) = (21T)20 (.P kiJ.) .fi. C(k iz )R m(k1' ••• , k m}, 
.-1 ,-1 (4.5) 

where the C(k z) are the characteristic functions 

C(k z) = (exp{- ikzh(xJ.)}) = exp[-1/2r(0)k~] (4.6) 

which arise from calculating moments of the A functions, 
viz.(R 1 == 1) 

A 1(k) = (A(k» = 1 d2xJ.e-ikJ.,xJ.C(kz) 

= (21T)2 0(kJ.)C(k z)· (4.7) 

Using (4. 1), (4.3), and (4.5) it is easily seen that the 
R m functions can be written in terms of 1m and R m., m ' < 
m, or in terms of In for n :s m. Examples were present
ed in Ref. 1. As is obvious from our formulation, the 
statistical problem here is the same as in Ref. 1. 

U Sing the partial summation technique discussed in 
Ref. 1, in problems in random media propagation,2 and 
field theory,7 the mean of G~mn can be written as 

(G~;"u(k',k"» =Mrmu(k',k") 

1 d3kM rmn(k',k)Pt(k)(Gf.i'u(k,k"». (4.8) 

The additional diagram notation in the statistical case 
and the function M rmn(k', k") are shown in Fig. 3. M rmn 
is the sum of connected diagrams and is the analog of 
the "mass operator" in random media propagation.2 

It is possible to factor a transverse delta function out 
ofM rmn' 

M rmn(k' ,k} = o(k~ - kJ.}'JLrmn(k~., k z}, 

and hence also out of (G~;"n)' 

(4.9) 

(4.10) 

where we have suppressed the transverse momentum 
dependence of 'JL and g. Substituting (4. 9) and (4.10) into 
(4.8) yields the reduced Dyson equation 

g~mn(k~, k;) = 'JLrmn(k~, k~) 
+ 1 dkz'JLrmp(k~, kz)Pt(k z } 

x gtpn(k z ' k~}. ( 4.11) 

The full Dyson equation for (rpr) can be found from 
(3.8) and (4. 8). It is given by 

(rpt(k', k"» = (21T)30(k' - k")rp±(k') 

+ P~(k') 1 d3kM rpn(k',k)(r~t(k,k"». (4.12) 

Equation (4. 11) is exact but unwieldy since the Born 
term and the kernel 'JL involve an infinite series of terms. 
The simplest approximation of this equation is to choose 
for 'JL the first term in the diagram expansion for M in 
Fig.3. The apprOximation neglects correlation effects 
and is in a sense an average surface approximation. 
M r mn is given by 

M rmn(k',k) ~ M~~n(k',k) 
= (21T)20(k~ - k J.)C(k~ - k z) V rmn (k', k). (4.13) 

Substituting (4. 13) and (4.9) in (4.11) yields the integral 
equation 
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FIG.3 The connected diagram sum equal to the mass operator M,mn 
(k', k") in the Dyson equation. 

g ± (1)(k' k") = (1Ti)-1C(k' - k")R (k') rmn z' Z z z rmn3 z 

+ (1Tit1Rrmp3(k~) 1 dk z 

x C(k' - k )P±(k )g± (1)(k k") c z q z q pn z' z' 

q=1 

q=2 

q = 3. 

(4.14) 

Equation (4.14) is the analog of Eq. (42) in the scalar 
case. 1 This completes the discussion of the first 
moment. 

Next, consider the second moment. The mutual co
herence function C mn is defined ass 

(4.15) 

Using the outgoing scattered fields given by (3.29) and 
(3.30),this can be written as (k z =Kcx.,k~ =K''> 
Cmn(x,x') = 6 IId2kJ.d2k~ei[k.x-k'.x·1 

a ,B;y,o 

where 

(¢ ~)cx. .B(k J.)¢~O)y.6*(k~» 

= 11 d2kld2k';(T';,·r(kJ.' kl)TI~-(- k~,- k';» 

x ¢~;)B(kl)¢~;)6*(k';). (4.17) 

Note that the products (T+T-) can be written in terms 
of the second moment of the GS functions via (3.28), 
viz. 

(T';,·r(kJ.' kl)Tlt~-(- k~, - k1:» 

= ~ (Gs+ (k k")Gs- (-k' - k"'» (4.18) 
K~r cx.mp' ynq , 

with the on-shell restrictions 

k;'= - Kt. 

Again using partial summation techniques and dia
gram properties, it is possible to write an integral 
equation for (Gs+, •• GS-' •• ) similar to Eq. (38) in Ref. 
1. It is given by 

(G~';"p(k, k1)Gr~q(k', k1» 
= (G~';"p(k, k1»(Gr~q(k', k1» K~~C(k, k'lkv k1) 

+ 1 d3k2Kf~U(k, k' Ik2' kl)P~(k2)(G~~p(k2' k 1» 
+ 1 d3k2K !f::,,f(k, k'lkl' k2)P;.(k2)(G~~q(k2, k1» 

+ 11 d3k2d3k2Kf::':(k,k'lk2,k2)P~(k2)P;(k2) 
(4.19) 
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This is called the reduced Bethe-Salpeter equation. 
The function KfP'g corresponds to the intensity opera
tor of random VOlume scattering theory,2 and is equal 
to the sum of connected incoherent diagrams shown in 
Fig.4. (We use the convention that the superscripts of 
K are to be summed over in the usual way. These are 
the only superscripts so summed.) Using (4.19) and 
(3.8) the full Bethe-Salpeter equation can be written 
as 

(r~n(k, kl)rp~(kl ,k1» 
= (r~""(k, kl»(rp~(k/, k1» 

+ p ..... (k)PT(k') II d3k2d3kaKJP',:'(k,k'!k2' ka) 
x <r~;(k2.kl)r;q(k2,ki». (4.20) 

It is possible to reduce the integrals in (4. 19) and 
(4.20) by using the translationa!invariance of the func
tion K to define a new function K via 

Kf;: (k,k'lkl'k1) = Ii(k.l - kl.L - k~ + k1J 

x Kyp~n (k+k',k-k1,k-k1) (4.21) 

The second moments of the Green' s functions r and G 
can be similarly factored. Additional simplifications 
occur by using the on-shell conditions of (4.18), but the 
general expressions are cumbersome and not very illu
minating, and we do not write them. Instead we turn to 
some simple examples. 

For an incident plane wave 

(4.22) 

where xt is a factor which carries the information that 
k iz = - Kt{p = t) or k iz = - K l {{3 = l) depending on 
whether the plane wave is put on the transverse or longi
tudinal shell, respectively (inCident stress or longitudi-

+---

FIG.4 The connected diagram sum equal to the intensity operator 
KyP';(k,k'ik",k"') in the Bethe-Salpeter equation. 

(0) 

(b) 

FIG.5 Lowest order coherent (a) and incoherent (b) contributions to 
the intensity. Note the sum over m. 
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nal wave, respectively). Combining (4.16), (4.17), and 
(4.22), we can write 

~ <cf>~)ex.ll(k Jcf>~O)y.r>*(k~» 
exll 
yo 

= ~ (T':nt+(k J.' kiJ.)Tl.~-{- ki, - kiJ.»X ~X ~*. 
0:8 
yo 

Multiplying this result by Ii mn and summing yields a 
definition of intensity I: 

Ii(k~ - kJ.)I(kJ.' kiJ.) = ~ (T<;.t+(kJ.' k i ) 
0:1l 
y6 

X n,;~-(- ki,- kiJ.»X~X~*' (4.23) 

where I(k.l' k i ) is the intensity scattered in the kJ. direc
tion due to :.tIl incident plane wave in the kiJ. direction. 
This becomes using (4. 18) 

'" 1T2 Ii(ki - kJ.)I(kJ.' kiJ.) = LJ K K (G~';..p(k,ki) 
0:8 ex y 
yo 

x G~;"i-k/,-kJ)dx~*. (4.24) 

An example of the use of this equation is the calcula
tion of the lowest order coherent contribution to the in
tensity. It is indicated by the diagram in Fig. 5a. Choos
ing for simplicity the incident field to have a particular 
on-shell behaVior (either one), the (3 and Ii sums in (4.24) 
can be done(~IlX~ = Xp) and the result is 

I(k.l,kiJ.) = li(kJ. -kiJIAmC(Kt-k i .. ) 

+ B mC(Kl - k i .. ) 12 (4. 25) 

with ktz = - Kt or - Kz depending on the choice of inci
dent field and where A m and B m are defined by 

KtAm = KtXm + Xp(kpJ. + liP3K t) 

x {lim3(1-2Iq/k~) -2Ktk m J./k t}, (4.26) 

KzB m = (km.l + li m3K z){AX3 + 2KzXp(kp.L + lip3Kt>/kt}. 

(4.27) 
The intensity can be normalized to reO) = 0 (C(k .. ) = 

1), and the delta function indicates specular scattering. 

A second example is the calculation of the lowest 
order incoherent intensity arising from the diagram in 
Fig.5b. The result is 

'" 41T4 I(kJ.' kiJ.) = LJ K K C(Kex - kiz)C(Kr - k i .. ) ex.r ex y 

X V~mp(k J.' Ka IkiJ.' kiZ)v~mq(- k J.'- Ky 1- ki.l' - k i .. ) 

x XpX !R2(k J. - kiJ.' Ko: - kiz 1- Kr + kiz)' (4.28) 

where 0, 'Y = t, 1 and k iz = - K t or - K z• The terms 
V~mp are defined as the on-shell version of (3.6) with 
the obvious expanded notation 

(4.29) 

to indicate the on-shell parameters. The function R2 
was defined in Appendix B of Ref.l (and misprinted). It 
is given by 

R 2(kl,k2) = I d2y J. e-ik!J.'YJ.{exp[_ r(Y.l)klzk2z1 - I}. 
(4.30) 
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Note that it is independent of k2J. so that the notational 
expansion can be written 

5. SUMMARY AND CONCLUSIONS 

The matrix Green's function and its first two moments 
for the isotropic elastic half space bounded by a random 
rough free boundary have been presented as solutions of 
integral equations and as series expansions in terms of 
diagrams. The results can be thought of as corrections 
to average (flat) surface theories due to the surface 
randomness. They can be used, e.g., in seismic calcula
tions and as approximations in finite elastic media 
bounded by random walls. As pointed out in Ref. 1, there 
are many computational difficulties involved in solving 
the Dyson and Bethe-Salpeter equations and these dif
ficulties are compounded in this paper by the fact that 
the given equations are really coupled sets of equations. 
The main advantage of this presentation is in the system
atic approach to higher order corrections. Approxima
tion schemes generated using feedback from experi
mental results would be necessary to actually use the 
theory. 

Finally we take the opportun~ty of this paper (see 
Ref. 9) to correct some misprints in Ref. I. 
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APPENDIX. CALCULATION OF THE KERNEL 

We wish to calculate the kernel function in (2.10) 
which is defined by 

Nz(x .J.)[T'r°(x', XS)]Zij 

= fJOZm{o~r?j(x',xs) + oir~j(x',xs)} 
+ .\OZiO~r~j (x', x s ) 

where we have used (2.8) for the traction operator. 
Using (2.4) we have 

r?j (x', x s) = fJ-IOijGb(X',xs) 

(AI) 

+ ko2o ioj {Gb(x', x s) - Gb<x',xs)} (A2) 

and thus to find (AI) we must calculate terms like 
o~Gb'Z(x',xs) and o~oioj{Gb(x',xs) -Gb(x',xs)}' The 
f6rmer terms were discussed in Appendix of Ref. 1 
where it was shown that 

i 
o~Gt.Z(x' X ) = -- Jd3kGt.Z(k) 

) 0 's (211")3 0 

X [k. + 0 p(K~.z)] eik.(x'-xs> }.J. j 3 k 
3 

(A3) 

where P stands for the Cauchy principle value and K ~. I 
= k~ I - k~. The point of the calculation is to subtract 
off the terms which are singular when we pass to the 
surface limit in constructing the integral equation (2.12). 
A similar straightforward and lengthy calculation can be 
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performed on the latter term and, when combined with 
(A3), the result can be written as [note that 0 mr~j = 
(.\ + 2fJ)-lOj Gb] 

o~r?j(x',xs) = - to(x~ -x.J.)O(z' -h(x.J.» 

X [fJ-10 ij Om3 + ko2(k~ -k~)O;30j30m3] 

+ _i_ J d3keik.(x·-XS> {Oij Gt(k) 
(211')3 fJ 0 

x [km.J. + Om3P (::)] - ko
2 

X [Gb(k) - Gb(k)][k;kjkm - k3k20i30j30m3] 

- k020i30j30m3[k~K~ Gb (k) 

- k~K¥GMk)]P(l/k3)}' (A4) 

Substituting (A4) in (AI) yields after another lengthy 
calculation 

Nl(x J[T'rO(x' ,xs)]/tj 

= - to(x~ - x .J.)e:(z' - h(x.l» 

x {Oij - Oi30j.lh(x.l) - AOj30 i.lh(x.l)} -Rji(x',xs )' 

(A5) 
where 

and 

Rjix',xs) = (21Tt3 J d3keik,(l['-x~>Rji(k,xs) 

iRjim(k) = Gb(k)Oij [km.l + Om3P(~;)J 

+ Gb (k)Ojm [ki.l + °i3P (~)J 

(A6) 

(A7) 

(A8) 

Note that, on the energy shell (see Sec. 3) where K~ 
= k~ and K ~ = k~ we have that 

This is the result of direct differentiation without 
any singularities being present. Equation (A8) can be 
further rewritten as 

(A10) 

where we have introduced the vector propagator Pn(k) 

~Gb (k), 

P n(k) = ) Gb(k), 

~ 1, 

and where 

n==l 

n=2 

n=3 

(AU) 
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(A12b) 

(A12e) 

On -shell we have that 

(A13a) 

(A13b) 
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The A and M transformation for finding an integral equation for the kernel of a generalized 
translation operator is adapted to the s -wave regular solution. Its extension to higher {-values is 
then considered for Jost solutions. The integral equations for the G.T.O. kernels are similar to the s 
wave one, with the difference that the Riemann function for the I-wave harmonic partial differential 
equation has to be introduced. As a consequence the condition f~+Y)lZsllV(s)!ds < oo,(x + y» 0, 
must be satisfied for the I wave, if one wants a continuous kernel. 

1. INTRODUCTION 
Only problems related to solutions defined as plane 
waves when r goes to infinity (Jost solutions) are treat
ed in this paper. The nonrelativistic inverse problem 
solution, the only kind of inverse problem considered in 
this paper, is related to the existence of an integral re
presentation of a solution for a Schrodinger equation 
E1 (with interaction V1) in terms of a solution for a 
second Schrodinger equation E2 (with interaction V2 ). 
The two solutions are speCified by the same kind of 
boundary condition. In what follows, this integral re
presentation is referred to as a generalized translation. 
The operator for the integral representation is a genera:
lized translation operator (G.T.O.).l 
Let us conSider the case when the boundary conditions 
are defined by the behavior of the solutions at infinity. 
The integral representation is 

1f'1 (x) :::: 1f'2(X) + {X> Kl2 (X ,y) 1f'2(Y )dy. (1) 
x 

Formal differentiations under the integral sign of Eq. 
(1), together with integrations by parts, lead to a hyper
bolic partial differential equation for the G. T .0. kernel 
K12 • If Coulomb forces are disregarded, as will be done 
in this paper, one obtains 

( 
a2 1(1 + 1) ~ = - + k 2 - 2 - V2 (y) K12(x,y), 

ay2 y 

lim K l2 (x,y) = 0, 
y"'OO 

d 
2 - K12(x, x) = V2 (x) - Vl (x), 

dx 

Kl2 (X,y) :::: 0, x> y. 

(2a) 

(2b) 

(2c) 

(2d) 

Solving Eq. (2) means specifying the conditions the po
tentials Vl' V2 must satisfy to secure the existence of 
Kl2 • The standard method consists in defining new 
variables related to the characteristics of Eq. (2): 

~=x+y, 1]=x-y, 

K12(~' 1]) = ~t da ~oo d(3 ~(l + 1)[(a + (3)-2 - (a - (3)-2] 

+ trv1 (a + (3) - V2 (<l - (3)]) K12(a, (3) 

+! 100 

d(3[V2 «(3) - V1(f3}]. (3) 
~ 
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The solution of Eq. (3) is obtained by iteration. This 
standard method has a severe shortcoming since the 
double integral contains a kernel which is singular when 
l is greater than zero. Although this inconvenience can 
be remedied using the Riemann method; this way of pro
ceeding is not conSidered here. Rather, we will apply a 
transformation due to Agranovitch and Marchenk02 and 
applied by them to the s-wave irregular solution known 
as the Jost solution. 3 

We will refer to the method as the A and M transforma
tion. The A and M transformation offers a compact 
form for the resolvent of the SchrOdinger equation as 
we shall see in Sec. 3. 

We have studied the p-wave case in detail and shown 
how the extension to higher 1 wave has to be construc
ted, and in so doing have noticed that requirements spe
cifying the behavior of the potentials depend on the 
value of l. 

Section 2 is concerned with the A and M transforma
tion and its use for the s-wave regular solution. 4 An 
extension of the irregular solution when the variable 
extends from + co to - co is given so that problems at 
fixed energy5 can be studied; this allows a simple proof 
of Loeffel's theorem and an extension of it for the case 
where the reference potential is Coulombian. 

Section 3 deals with the p-wave problem, the extension 
to higher waves, as well as the I-dependence require
ment. 

2. THE A AND M TRANSFORMATION 

The A and M transformation is extensively developed in 
Ref. 2, so it is unnecessary to recall details given there. 
The case of the irregular solution conSidered by the 
previous authors, as well as its variant for the regular 
solution, is only summarized. An extension to the case 
where the variable runs from + 00 to - 00 is given for 
later use. 

A. Irregular solutions 

A and M Theorem: If (11 (x) < co, x > 0, then the Schro
dinger equation 

r £. + k 2 - V(X)]f(k,X) = 0, limf(k,x) = eikx 

Ldx2 x-oo 

has a solution 

f(k, x) = e ikx + f"" K(x,y )eikYdy, 
x 

Copyright © 1973 by the American Institute of Physics 1574 
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where the function K(x ,y) satisfies 

I K(x,y) I :s ! 0"0 [(x + y)/2] exp[ 0"1 (x)]. (2.1) 

In this theorem O"i = 100 

t i I V(t) Idt. o 

Outline of Proof: The integral equation for f(k,x) 

f(k,x) = eikx - 1. JGO sink(x - s)V(s)f(k, s)ds, (2.2) 
k x 

and its possible representation 

f(k, x) == eikx + Joo K(x, s) eiks ds, 
x 

(2.3) 

are conSidered together. 

Following Ref. 2, one obtains 

l
GO J( .... Y)/2 

K(x,y) == ! V(s)ds + ! V(s)ds 
( ... +yl/2 x 

j .Y+ S-;% J 00 JY+ s-x 
x K(s,u)du + ~ " V(s)ds K(s,u)du, 

y+x-s (x+y,.2 s (2.4) 

from which the bound (2.1) is derived. 

From Eq. (2. 4), as well as from Eq. (2. 3), one can ob
tain the partial differential equation 

- - V(x) K(x,y) == - K(x,y), 
( 

02 ~ 0
2 

ox2 oy2 

lim K(x,y) = lim ~K(x,y)=O, 
X+y~GO X·Y-+OO oy 

If"" K(x,x) ="2 V(s)ds. 
x 

(2.5) 

When the conditions of the theorem are satisfied, a 
G. T .0. exists. Extension to two potentials VI (reference 
potential), V2 and two Schr'odinger equations is immedi
ate. Conditions are 

JGO tillj(t)ldt < w, i == 0,1, j = 1,2. 
x 

The bound for the kernel K12 is obtained from those of 
K10,K02 ' 

In order to prepare Sec. 2C, we extend the equations 

f(k, s) ::::: eikx - J"" sink(x - s) ! V(s)f(k, s)ds, 
x k 

f(k,x) = eik ... + Joo K(x,s)eiksds 
x 

to negative values of x with the restriction s ~ x. 

For any positive x, one has 

JGO It xl IV(t)ldt == JX It-xl IV(t)ldt 
-x -x 

+ Joo It-xl IV(t)ldt 
-x 

:s JX xl V(t)ldt + foo tl V(t)ldt. 
-x x 

For the existence of the G.T.O., one must now require 
the two inequalities 

1"" tl v(t)ldt <.w, JX I V(t)ldt < 00. 
x -x 

(2.6) 

B. Regular solution 

In Ref. 2 (p.18) a bound is given for the regular solution 
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1/I(k,x) ==! sinkx + JX ! sink(x - s)V(s) 1/I(k, s)ds, 
k 0 k (2.7) 

1lJ;(k,x)e- ikx I :s X exp ~x tl V(t)ldt. (2.8) 

The existence of an integral representation 

lJ;(k,x) ==! sinh + J x K(x ,y) ! sinky dy (2.9) 
k 0 k 

can be obtained from (2.8). However, our interest lies 
in the integral equation satisfied by the kernel K(x ,y) of 
Eq. (2. 9) so we proceed otherwise. 

Comparison of (2.7) and (2.9) gives 

IX K(x, s)! sinks ds =:: JX ! sink(x - s)V(s) ! sinks ds 
o k 0 k k 

-r IX ! Sink(x - s)V(s)ds t K(s,u)! sinku du 
o k 0 k 

== J1 + J2 , (2.10) 

J ==1. JX sinkt dt J(x+Y)/2 V(s)ds 
1 2 0 k (x-tl/2 ' 

(2.11) 

J
2 

= ~ (r; sinkt dt l x
-

t 
V(s)ds t-x

+
s 

K(s,u)du 
o k 0 x-S-I 

+ IX V(s)ds t K(s,u)du - JX " V(s)ds 
o t+,,-s (x+t" 2 

X t K(s,u)du - /"-t)/2 V(s)ds r K(S,U)dU). 
t+x-s 0 x-s-t 

(2.12) 
An inverse Sine transform provides the integral equa
tion for K(s,Y): 

( ... +y)/2 fX S 

K(x,y) == t J " V(s)ds + ~ V(s)ds J 
(x-",,2 x-y Y-"+S 

x K(s,u)du + ! r y 
V(s)ds t K(s,u)du 

( ... -yl/2 x-s-y 

_~Jx V(s)dst K(s,u)du, forx~y. 
(x+yl/2 y+x-s 

Wheny = x, Eq. (2.11) reduces to 

I IX K(x,x) == i V(,s)ds. o 
We define 

IX sij V(s)lds == O"i(X) 
o 

(2.13) 

and solve for K(x ,y) by iteration. The following bounds 
are then obtained: 

that is, 

IK(x,y)1 :s to"o(x) exp80"1(x). 

Theorem: If 

o"o(x) = IX I V(t)ldt < w, 
o 

(2.14) 

a G. T.O. for regular solutions exists. Its kernel is a 
continuous function. 
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The theorem can be extended to secure the existence of 
a G.T.O. between two Schrodinger equations with poten
tials VI' V2 satisfying the condition of the latter theorem. 

Insertion of estimate (2. 14) into Eq. (2. 13) shows that in 
the limit wheny goes to zero,K(x,y) vanishes. 

C. Problems at fixed energy 

This subsection is an application of subsection 2A. To 
apply the G.T.O. theoryl to fixed energy problems,5 one 
must consider the differential operators 

r2(£ _ l(l + 1) _ V(r) + k2), 
or2 r2 

(2. 15) 

and the integral representation 

1/I1(k,r) = 1/Ip(k,r) + t K(r,s)s-21/1P(k,s)ds. (2.16) o 

We let Vo = ° in (2.15) for reasons of SimpliCity. The 
kernel K(r, s) satisfies a partial differential equation 
that we will not specify. Instead, we set kr = e-U , ks = 
e-v, A(u, v) = e-1/ 2 (u+v) = K(u, v) and derive the 
equation for A(u, v) 

(£ + e-2u [1- V(e- U )]\ A(u, v) = (£ + e-2v\ A(u, v), 
ou 2 I) ov 2 ) 

(2.17) 

lim A(u, v) = lim ~ A(u, v) = 0, 
v-co v-co a v 

.!!... A(u, u) = - t e-2u V(e- u ). 
du 

Equations (2.17) and (2.5) with two potentials are iden
tical when one defines 

(2.18) 

and allows the variable to extend from + <Xl to - <Xl. 

The following conditions are, therefore, required for the 
existence of K(r, s). For r< 1 

f 11-V(t)ltllntl i dt<<Xl, i=O,l, 
o 

and for r > 1 

11 11 - V(t) I t lIn t I i dt < <Xl, i = 0, 1, 
o 

t t11- V(t)ldt < <Xl 
1 

(2.19) 

According to (2.19) the potential V(t) must be less 
singular at the origin than the centrifugal barrier. Con
dition (2.19) is identical to the one obtained by Loeffe16 

who uses properties of the Laplace transform and ob
tains 

1 1 t l - 2< 11- V(t)ldt < <Xl. 
o 

(2.20) 

It is similar to the one obtained by Kelemen 7 although 
less restrictive, since there is no bound on the exten
sion of V for complex t: 

I V(x + iy) I = I V(Re i9 ) I ::S Mr2y-2(1 + Ie Ik), (2.21) 

with y > 0, k < 1/2. 
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When Vo = 1)/r, as in Ref. 1, one defines 

VI = e-2u[1- V(e-u)] + 1/e-u, V2 = e-2u + 1)e-u • 

There is no modification on the condition that V must 
satisfy for the existence of a G.T.O. 

3. EXTENSION OF THE A AND M TRANSFORMATION 
TO HIGHER PARTIAL WAVES 
Both the A and M2 or the Gel 'fand- Levitan4 results are 
restricted to potentials with a regularity property, 
regularity at infinity for A and M, regularity at the ori
gin for G.L. One may want to know how the results can 
be extended when either the centrifugal barrier or the 
Coulomb repulSion are included in the reference poten
tial. In this paper, attention is limited to the centrifu
gal barrier. In addition, we limit ourselves to solutions 
defined by their behavior at infinity; the case of solu
tions defined by a property of regularity at the origin 
can be treated without any difficulty. The p-wave case 
occupies parts A and B of this section, higher waves in 
part C. 

A. Integral equation (p wave) 

We use the following definitions: 

h(kx) = eikx [l - (l/ikx)], 

Go(k,x, s) = _ sink(s - x) + _1_..!!:.. sink(s - x) • 
k ksx dx k 

The integral equation for the irregular solution is 

f(k,x) = h(kx) - foo Go(k,x, s)V(s)f(k, s)ds. (3.1) 
" 

Equation (3. 1) can be solved by iteration if3 

100 

sIV(s)lds < <Xl. (3.2) 
o 

In other words, one can expressf(k,x) as an infinite 
series or as 

f(k,x) = h(kx) - foo G(k,x,s)V(s)h(ks)ds, 
x 

Where G (k, x, s) is the resolvent for the Schrodinger 
equation with potential V(x). 

(3.3) 

Equation (3.3) suggests the search for a compact form 

f(k,x) = h(kx) + foo K(x,y)h(ky)dy. 
" 

(3.4) 

If K(x, y) eXists, it must satisfy a partial harmonic dif
ferential equations with the boundary conditions 

lim K(x,y) = 0, 
y-co 

.!!... K(x,x) = - t V(x). 
dx 

Comparison of eqs. (3.1) and (3.4) gives 

(3.5) 

foo K(x, s)e iks[l- (1/iks)]ds = foo V(s)Go(k,x, s)ds 
x x 

X eiks [l - (l/iks)] + foo V(s)ds 
x 

x foo Go(k, s,u)K(s,u)du e ikM[l- (l/iku». (3.6) 
s 

Both sides of Eq. (3. 6) are multiplied by the differen
tial operator D, 

D =~..!!:..k 
ik dk ' 
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and by the integral operator, 
1 +00 - J e-ikYdk. 

21T - 00 

By so doing, one gets 

l.h.s. = K(x,y)y, r.h.s. = J I + J2 . 

The definition of Go(k,x, s) and the integration over k 
yield 

JI = i.r )/ V(s)dsA(s, s), (x+y 2 
(3.7) 

j (X+Y)/2 Joo 
J2 = i V(s)ds K(s,u)A(s,u)du 

x x+y-s 

+ ~J.oo V(s)dsJ
oo 

K(s, u)A(s, u)du 
(x +y)/2 5 

- i JOO V(s)ds Joo K(s,u)B(s,u)du, (3.8) 
x %+Y-5 

A(s,u) =B(s,u) == R(u,s)y, 

R = 1 + (l/Susxy)(u + s -x -y)(s -u +y -x) 

x [(u + y)2 - (s + x)2]. (3.9) 

From R(u, s) one gets R(s, s). The integral equation 
for K(x,y) becomes 

K(x,y) = t 100 

V(s)R(s, s) ds 
(x + y)/2 

1 j(X+ Y)/2 J Y +5 - X 
+ 2 . V(s)ds K(s, u)R(u, s)du 

x .x + Y-8 

1 rOO jY+S-X 
+ 2),( )/ V(s)ds K(s,u)R(u,s)du. 

X+Y 2 5 
(3.10) 

Equation (3.10) reduces to Eq. (2.4) when 

R(u, s) = R(s, s) == 1. 

B. Existence theorem 

We proceed by associating bounds with K o' K l' ••• ,Kn: 

IKols i1(00 )/ IV(s)lds + i1(00 ) IV(s)lds(1/8s 2x) 
x +Y 2 x + y /2 

x (2s - x- y)(y - x)[(s + y)2 - (s + X)2] 

:5 iao[(x + y)/2] + (18/16x)j(00 ) s I V(s) Ids. 
x+ Y /2 (3. 11) 

A fortiori one has 

(3.12) 

We consider the R-function in the domains D I ,D2 de
fined by the double integrals 

100 j,+5-X 
D I : / ds du, (x+y) 2 5 

j
(X+ Y)/2 j'+s-x 

D 2 : ds duo 
x y +X-8 

In the domain D I 

IR(u, s) I :5 1 + (4s/ x), (3. 13) 

while in the domain D 2 , 

IR(u,s) I :5 1 + (8s/x). (3.14) 

We choose 

IRI:5 1 + (8s/x). (3.15) 
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With this estimate the following bounds are obtained: 

IKII '" (3/x)a1[(x + y)/2] 5a1(x) , 

I K21 '" (3/x)a1 [(x + y )/2]( 5al (x»2 1, 
2 

1Kn I", (3/x)<1:J.[(x + y)/2](5al (x)n(l/n!), 

IKI", (3/x)a1[(x + Y)/2] exp 5al (x). 

(3. 16) 

Theorem: If a 0 (x), a I (x) exist, a G. T .0. can be de
fined for an 1 = 1 wave. Its kernel is bounded by the 
estimate (3.16). For other properties relative to the 
p-wave, see Ref. 9. 

C. Extension to higher waves 

Although estimates (2.1) and (3.16) require the same 
asymptotic moments from the potential, their structures 
are different. It is, therefore, interesting to consider 
the 1 = 2 'wave case. 

We obtained the function R(u, s; x, y) by 

1 1 j+oo . 1 d 
-R(u,s;y,x) =- e-·ky -:--[Go(k,s,x)h(ku)k]dk. 
y 21T -00 zk dk (3.17) 

Integration by parts of Eq. (3. 20) 

1 Joo R(u, s;y, x) = - h(- ky )Go(k, s, x)h(ku)dk, 
21T -00 

(3.18) 

which is precisely the definition of the Riemann func
tion defined for the harmonic equation by ChaundylO 
and Copson 11: 

(~ - -.!)R(Y, x) = (~ - -.!) R(y, x). 
dy2 y2 dx2 X2 

Defining a = x + y, f3 = x - y , 

x __ (a - A)(f3 - B) 

I - (a + (3)(A + B)' 

one gets 

X 2 = -'..( a_-_A--,)-=..(f3_-_B...:..) 
(a - (3)(A - B) 

R(a,f3;A,B) = P1(1- 2xI - 2x2 + 2x1x2), 

or in our notations 

(3.19) 

PI (1 + _1_ (u + s - x - y)(s - u + y - x) 
8usxy 

X[(u+ y )2_(S+X)2]) (3.20) 

Instead of using the operator D, we may choose to write 
Eq. (3.10) directly by introducing the proper Riemann 
function. 

We follow this method for higher partial waves. For 
1 = 2, for instance, we have 

1 rOO 
K(X,y)=2)1( )/ V(s)dsR 2(s,s) 

x +y 2 

1 rOO 1Y + s-x + 2)(, )/ V(s)ds K(s,u)duR 2(u,s) x+y 2 s 

.!.j<x +y)/2V(s)ds jY+s-x K(s u)duR (u s). 
+ 2 x Y-S+x' 2' (3.21) 

Writing (3.20) as PI (X) 

X = 1 + _1_ (u + s - x - y) 
8usxy 

x (s - u + y - x)[ (u + y)2 - (s + X)2], 

(3.22) 
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We have now 

IKOI !S tJ("" )1 I V(s)ldsR 2(s,s). 
• x+Y12 

The recursion relation for the Legendre polynomials 

is used, as well as the estimates 

X(s,s)!S 1 + (4s/x), X(u, s) !S 1 + (8s/ x), (3.23) 

to obtain a bound for Ko(X,y): 

IKo(x,y) I !S 1. f"" I V(s) Ids[2 + (12s/x) + (24s2/x2)]. 
2 (x+ y)/2 

Since s> x, 

IKo(x,y) I "" (20/x2)az ex; yl 
IK1(X,y) I "" 200'2~x ;y») Ix"" sIV(s)lds 

x (2 + 24s + 96X2) _1_ 
x x 2 2s2 

"" (20/x2)az((x + y)/2)610'1(x). 

The same method as before gives 

IK(x,y) I"" (20/x2 )0'2 [(X; y)] exp 610'1(x) 

(3.24) 

(3.25) 

(3.26) 

A condition on the existence of a moment of order two 
is included in the upper bound for K(x,y)(l = 2). It 
must be clear that the recursion relation between the 
Legendre polynomials introduces a condition on the 
moment of order l for an l-wave. 

However, the conditions obtained are sufficient condi
tions and exceptions may exist of potentials not satis
fying the theorems and susceptible of furnishing a 
continuous kernel. In addition to this remark, there 
may exist kernels which are simply" generalized func
tions." 12 

Nevertheless, it is interesting to compare our results to 
others obtained by Faddeev in a related are. 13 Faddeev's 
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theorem is stated as follows: if S(k) is the S-function 
for the Schrodinger operator, L(l), with the potential 
g(x), it is also the S-function for the Schrodinger opera
tor, L(m), where the corresponding potential g( m) (x) 
behaves like g(x) as x -> 0 and as x -> 00. The class of 
potentials considered in Faddeev's theorem are such 
that 

1"" x Ig(x) I dx < 00. o 

Comparison with Faddeev's theorem shows there is 
room for solutions of Abranovitch-Marchenko equa
tions which are not continuous functions, and demon
strates, in addition, the interest of problems related to 
solutions defined by their behavior when r approaches 
zero. 
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Application of Kraichnan's direct interaction 
approximation to kinematic dynamo theory. II. 
Incompressible, helical velocity turbulence and a pair of 
coupled, singular, nonlinear integral equations 

I. Lerche 
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Using Kraichnan's direct interaction approximation, we set up the equations governing the normal 
modes of the ensemble average magnetic field under incompressible, nonmirror symmetric velocity 
turbulence. We show that (i) the Green's stress tensor enjoys equipartition of its symmetric and 
antisymmetric parts at the normal mode frequencies of the ensemble average field, (ii) for static 
velocity turbulence, including helicity, there are no growing modes, (iii) the commonly used first 
order smoothing theory approximation is invalid when compared to the Kraichnan equations, for the 
Kraichnan equations do not satisfy Hammerstein's theorem while first order smoothing theory 
requires the satisfaction of Hammerstein's theorem, (iv) if there is to be any growth of the ensemble 
average magnetic field it must come from time dependent velocity turbulence, and when the velocity 
turbulence is time dependent we have so far been unable to solve the Kraichnan equations. We have 
done these calculations for two reasons. First to illustrate, by exact solution, the manner in which 
the normal modes of the ensemble average magnetic field depend on the helicity and Reynolds 
number of the turbulent velocity field. Second to show that approximate treatments of the 
hydromagnetic equation (like first order smoothing theory), rather than exact solution, are liable to 
give rise to substantial error in view of the fact that the Kraichnan equations do not satisfy 
Hammerstein's theorem. 

I. INTRODUCTION 

In a previous paper Ref. 1, hereinafter referred to as 
Ll, we reported calculations of kinematic dynamo acti
vity using Kraichnan's2 direct interaction approximation 
(DIA). The calculations were done for an infinite homo
geneous medium which possessed an incompressible, 
isotropic, mirror- symmetric, homogeneous, stationary, 
turbulent velocity field. We pointed out in Ll that under 
Kraichnan's DIA the true turbulence problem is re
placed by a model, or models, which lead without appro
ximation to closed expressions for the ensemble average 
Green's function and magnetic field. Further it has 
been shown (Kraichnan,2j Frisch3 ) that the model tur
bulence problems represent phYSically realizable situ
ations so that one is guaranteed that the results make 
phYSical sense. [One is not guaranteed a priori that 
the model turbulence problem results are representa
tive of the ensemble system that nature provides, but 
Frisch has shown that the model problem results are 
indeed approximate solutions of the true turbulence 
problem.] 

We also pointed out that the Kraichnan equations are 
valid for arbitrary values of the parameters involved 
(in particular the magnetic Reynolds number), unlike 
approximation methods that have been used to date 
(Krause and Roberts,4 Lerche,5 Krause 6 ) whose validity 
has not been established in general, but whose invalidity 
has been established in particular cases (Kraichnan, 
Lerche and Parker, 7). 

Altogether then, Kraichnan 's DIA provides a power
ful method of investigating the average properties of 
turbulent systems for arbitrarily large values of any 
parameters involved. 

In this paper we intend to extend the work reported 
in Ll to a more general form of velocity turbulence 
than the incompress'ible, isotropic velocity turbulence 
used in Ll. 

The motivation behind this extension is two -fold. 
First for incompressible, mirror-symmetric, isotropiC 
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and static velocity turbulence we showed that the nor
mal modes of the ensemble average magnetic field were 
degenerative under a large class of turbulent velocity 
fields (see Ll for further detailS). The question arises: 
Can helical, velocity turbulence produce normal modes 
which -grow? And, if so, what are the criteria for growth 
(e.g., particular dependences of the helical turbulence 
on frequency, or levels of the helical term exceeding 
critical values, etc.)? 

Second, there has arisen a debate (Krause and Roberts, 
Lerche8 ) concerning the way to handle various turbu-
1ence problems. We proved in Ll that the so-called 
first order smoothing theory (Krause and Roberts) is 
not a uniformly convergent expansion of the Kraichnan 
DIA equations and Kraichnan has also remarked on this 
point. Accordingly, the DIA equations have to be solved 
exactly, for any approximate solution will give rise to 
a substantial error according to Hammerstein's9 theo
rem. The question arises: Is the same sort of non
uniformity present when the velocity turbulence in
cludes a helical contribution? 

For these, and other, reasons we believe that the 
problem investigated here is of more than academic 
interest. 

Kraichnan has given the general method of obtaining 
the model DIA equations from the true turbulence prob
lem, and we refer the interested reader to his elegant, 
and excellent, paper for an appreciation of the details 
of the method. 

In the interest of brevity we shall quote here only 
those results which are pertinent to our particular 
problem. 

II. BASIC EQUATIONS 

Consider an infinite medium possessing a constant 
resistivity TJ devoid of any large scale velocity field but 
possessing a turbulent velocity field v(x, t) which has 
zero mean. The behavior of a magnetic field, b(x, t), 
in such a medium is governed by the induction equation 

Copyright © 1973 by the American Institute of Physics 1579 
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abo a 
-' - T/V2b j = EljkEklm- (vzb m), 
at aXj 

(1) 

with abJax l = o. 

Under Kraichnan' s direct interaction approximation 
the equations describing the evolution of the ensemble 
average magnetic field, B(x, t), and the ensemble average 
Green's tensor, G, are 

~" a af - T/v2Bj = Eijk(klmEaJKEKLM. ax" i~ dt
l
d3x ' 

J 

x IGma(x, tlx/, t')_O_ [UIL(X, tl x', tl)BM.(x /, t/)]) (2) 
\' aXJ 

and 

(1... - T/V2)G iU(X, t I x', t') = ° iuO(X - x/)o(t - t') 
at 

a 1t dt"d3 " + (iJ"kf.klmf.abKEKLM - X a t' Xj 

xl Gma(x, t I x", t") _0_ [UlL(x,tlx",t")GMu(x':,t"lx/,t l )]\, 
\' ax;; 'J 

(3) 
where UlL(x, t I x', t') = (v z(x, t)v L(X', t'», 

with G Ij(x, t I x', t') = 0 in t < t'; 

since only forward-going (in time) Green's functions are 
phYSically permissible. 

For homogeneous, stationary velocity turbulence (and 
we shall restrict our attention to just this form of tur
bulence for the remainder of the paper), we have 

Un(x, t I x', t'l = UlJJx- x', t - t'). (4) 

Then by inspection of Eq. (3) we see that the Green's 
tensor must be homogeneous and stationary, so that 

G Ij(x, tl x', t') = G ij(X - x', t- t'). (5) 

It then follows that with 

Bj(x, t) = J d3kdwB i(k, w) exp[i(k.x - wt)]. (6) 

and: 

[UI/r, T),G;j(r, T)] = J d3kdw[U;j(k, w), Gij(k, w)] 

x exp[i(k.r - WT)], (7) 

we obtain from Eqs. (2) and (3) the expressions 

(Tjk2 - iw)Bi(k, w) =- (21T)4 J d3Kt:tn[kjKbBb(k, w) 

x [- U la (K, Q)Gja(k - K, w - Q) 

+ Uja(K,Q)Gla(k- K,w- Q)] 

+ kjkbBa(k, w)[Ujb(K, Q)Gia(k- K, w - Q) 

- Ulb(K, Q)Gja(k- K,w- Q)]] (8) 

and 
(T/k2 - iW)G;u(k, w) = (21T)-40iu - (21T)4 J d3Kdnkj 

X (kb - Kb)[Ula(K, Q)Gja(k- K, w - Q)Gb,,(k, w) 

+ Ujb(K, Q)Gja(k- K, w - Q)Gau(k, w) 

- Uib(K, Q)Gja(k- K, w - Q)Ga,,(k, w) 

- Ujb(K, Q)Gla(k- K, w - Q)Gbu(k, w)], (9) 

where use has been made of k IB;(k, w) = 0 to eliminate 
some of the terms in Eq. (8). 
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Note that Eq. (8) is linear in B. So a solution to it 
exists if, and only if, a dispersion relation is satisfied. 
Our task is to obtain that dispersion relation and see 
if it possesses any growing modes. H so we then have 
regenerative kinematic dynamo action under kinematic 
velocity turbulence. In order to obtain the dispersion 
relation from Eq. (8) we must do two things: first, we 
must specify the tensor form of U I/k, w); second, we 
must then solve Eq. (9) exactly for G;u(k, w). Armed 
with this information we can then substitute for U"" and 
G lu in Eq. (8) to obtain the dispersion relation. IJ 

III. INCOMPRESSIBLE, HELICAL VELOCITY 
TURBULENCE 

In an infinite medium with no preferred axis the most 
general form of incompressible velocity turbulence is 
given through (Batchelor 10) 

U;j(k, w) = E(k, w)(o Ij - k jk j k-2) + iEljj1.k I'H(k, w), (10) 

so that k j U;j = k j U Ij = O. 

Further, E(k, w) ~ 0 for all real k and w by Cramer'sll 
theorem; and 

- E(k, w) ~ kH(k, w) ~ E(k, w), (11) 

for all real k and w, again by Cramer's theorem. 

We nOw define the two basic integrals 

I iajb == J d3KdQUia (K, Q)Gjb(k- K, w - Q) (12a) 

and 
J iajbA == J d3KdflK AU la(K, Q)G jb(k- K, w - Q). (12b) 

In terms of these integrals, Eqs. (8) and (9) become 

B I(k, wHo la (Tjk2 - iw) + (21T)-4[k j(Jjb;ba - J jbjba ) 

+ kjkb(Ijbla - I ibja )} = 0 (13) 
and 

G lu (k,w)(Tjk2- iw) = (21T)-40 Iu - (21T)4k j 

x [Gbu(k, w)kb(Iiaja - I jaia ) 

+ Gau(k,w)kb(Ijbia - Ilbja) 

- Gbu(k, w)(Jlajab - Jjaiab)]' 

where we have used the incompressibility condition 

(14) 

k I U Ij = k j U Ii. = 0 to eliminate several of the terms in 
Eqs. (8) and \9). 

Since the velocity turbulence has no preferred axis, 
it follows that G lu also has no preferred axis and that 
G iu must take on the general form 

G" (k, w) = R(k, w)o. + S(k, w)kik u + iEiuBkBF(k, w), 
IU IU (15) 

where R, S, and F are (so far) unknown scalar functions 
of arguments k, w. 

Upon substituting Eqs. (10) and (15) into Eq. (14) it is 
a Simple, but tedious, matter to show that R, S, and F 
must satisfy the equations 

R(k, w)[T/k2 - iw + (21T)4~(k, w)] 

= (21T)-4 - (21T)4F(k, w):JL(k, w), (16a) 

S(k, w)(Tjk2 - iw) 

= (21T)-4k-2[ R(k, w)~(k, w) - F(k, w):JL(k, w»), (16b) 

F(k, w)[T/k2 - iw + (21T)~(k, w») 

= - (21T)4k-2R(k, w):JL(k, w), (16c) 
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where 

~(k, w) == J d 3Kdn(k 2 - (k.K)2K-2) 

x E(K,g)R(lk-KI,w-n), (17a) 

'JI..(k, w) == J d 3KdnJ,k 2 - (k.K)2K-2) 

x [E(K, n)(k2 + K2)F( Ik - K I, w - n) 

+ H(K, n)K2R(1 k- KI, w - n)]. (17b) 

It is then a simple, but tedious, matter using (15) with 
(16a), (16b), and (16c) to show that the dispersion rela
tion obtained from Eq. (S) is given by 

1]k2 - iw + (2w)4~(k, w) == ± (2w)4k-1'J1..(k, w). (IS) 

So the immediate task before us is to solve equations 
(16) and then to use the results in Eq. (IS) to obtain the 
complex (in general) frequencies, w, as functions of the 
real wave number k at which Eq. (S) is satisfied. 

It is clear by inspection of Eq. (16) that S is a "pas
sive" quantity in the equations in the sense that, once 
Rand F are known from Eqs. (16a, 16c, 17), S follows 
directly; but no knowledge of S is required in order to 
solve Eqs. (16a), (16c), (17). Further, only R and Fare 
necessary in order to obtain the dispersion relation (lS). 
Accordingly, we can concentrate our attention on Eqs.(16a), 
(16c), (17), (lS) and ignore Eq. (16b) for the moment. 

Before delving into the detailed method of solution to 
Eqs. (16a), (16c), (17) there are a few properties of the 
equations that can be utilized. 

First note that when the dispersion relation (lS) is 
satisfied at some complex w this implies rfrom equation 
(16c)] that 

kF(k, w) == ± R(k, w). 

But from Eq. (16a) we have 

(2w)-4 
1]k2 - iw + (2w)~(k, w) == -- - (2w)4F(k, w)'JI../R, 

(19) 

R (20) 

and then Eqs. (16a), (16c), and (IS) can only be com
patible if, when Eq. (lS) is satisfied, we have 

I R I == CXl == IF I, with Fk/R == ± 1. (21) 

In other words, the dispersion relation (IS) for the 
normal modes of the magnetic field is given by the 
solution to Eqs. (16a), (16c) together with the constraint 
(21). 

In order to capitalize on the constraint (21), it is use
ful at this point to write 

g(k, w) == (2w)-4/R(k, w), f(k, w) == (2w)-4/F(k, w), 

so that Eqs. (16a) and (16c) become 

1]k2 - iw + ~(k, w) == g(k, w) - 'JI..(k, w)g(k, w)/f(k, w) (22) 
and 

g(k, w)[1]k 2 - iw + ~(k,w)] == - k-2j(k, w)'JI..(k, w), 

with 

~(k, w) == J d3KdnE(K, n)[k2 - (k.K)2/K2] 

(23) 

x/g(lk- KI,w- Q), (24,) 

'JI..(k, w) == J d3Kdn[k 2 - (k.K)2/K2] 
x [E(K, n)(k 2 + K2)/f( I k- KI, w - n) 
+ K2H(K, n)/g( I k - KI, w - n)]. (25) 
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Then the dispersion relation (lS) takes on the con
straint form 

g == 0 == f, gk/f == ± 1. (26) 

Before proceeding further with Eqs. (22)- (26) it is 
convenient to simplify the equations by introducing 
different variables. 

First, note that 

00 Sl(k,K,n) 
~(k, w) == k 2 fa K4dK ( ) dn, 

g K,W - 0 
where 

Sl(k, K, n) == 21T f1 d(.1.(l- (.1.2) 
1 

(27a) 

x E«k2 + K2 + 2kK(.1.)l/2, n)(k2 + K2 + 2kK(.1.)-1, (27b) 

and 
+1 

S3(k, K, n) == 21T 1-1 d(.1.(l- (.1.2)H«k2 + K2 + 2kK(.1.)1/2, 0) 

Then in Eqs. (22)- (25) write 

g(k, w) == 1]k24>(k, w), f(k, w) == 1]k2lJ!(k, w) 

to obtain 

and 

1.
00 Sl(k,K,O)dKdO 

1- iw/(1]k2) + rr2 K2 --:---...,-:--
o 4>(K, W - n) 

== 4>(k, w) - 1]-24>(k, w)lJ!(k, w)-l 100 

K2dKdn 
o 

x [S2(k,K,n)/lJ!(K,W- 0) 

+ S3(k, «, O)/<Ji(K, w - 0)] 

(2Sc) 

(29) 

4>(k, w)[l - iw/(1]k2) + 1]-2 100 
K2dKdnS1(k, K, O)/4>(K, w - n)] 

o 
== - (1]k)-2+(k, w) 100 

K2dKdn[S2(k, K, 0)/lJ!(<<, w - 0) 
o 

+ S3(k, K, n)/4>(K, w:- 0)]. (30) 

The dispersion relation (lS) takes on the constraint 
form 

4> == 0 == lJ!, 4>k/+ == ± 1. (31) 

Consider then the situation in which the velocity 
turbulence is static: 

E(k, w) == E(k)o(w), E(k) ~ 0, 

so that, by Cramer's theorem, 

H(k, w) == H(k)o(w), 

with 

- E(k) ..; kH(k) ..; E(k). 

Then Eqs. (29) and (30) can be written 

1 - iw('f)k2)-1 + 1]-2 100 

K2 J 1 (k, K)<Ji(K, w)-ldK 
o 

== 4>(k, w) - 4>(k, w)1]-2lJ!(k, w)-l 100 
K2dK 

o 
x [J2(k, K)lJ!(K, w)-l + J 3(k, K)4>(K, w)-l] 

(32) 

(33) 

(34) 
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and 

4>(k,w)[1- iW('I7k2)-1 + rr2 1"0 K2J 1(k,K)4>(K,W)-1dK] 
o 

with 

= - (k'l7)-2>!1(k, w) 1"0 K2dK[ J2(k, K)>!I(K, w)-1 
o 

+ J 3 (k, K)4>(K, w)-1], 

+1 
J 1 (k, K) = 211 J dJ.1.(1- J.1.2)E(1 k + KI)I k + KI-2, 

-1 

(35) 

(36a) 

Now let E(k) be characterized by a scale length L (the 
correlation length) and an "intensity" L3v2, and let 
H(k) be characterized by the same scale length and 
"intensity" L 4v2 • Then write k ~kL, w ~'I7L-2w so 
that in dimensionless form (with 4> ~ 4>, >!I ~ >!I/L)Eqs. 
(34) and (35) become 

1- iwk-2 + R2 1"0 K2dKJ1 (k,.K)4>(K, w)-1 
o 

= 4>(k,w)- R24>(k,w)>!I(k,w)-1 1"0 K2dK 
o 

x [J2(k, K)>!I(K, w)-1 + J 3 (k, K)4>(K, w)-1] (36') 

and 

4>(k,w)[l- iwk-2 + R2 {o K2dKJ1(k,K)4>(K,W)-1] 

=- >!I(k, w)(R/k)2 fO K2dK[J2 (k, K)>!I(K, w)-1 
o 

+ J 3 (k, K)4>(K, w)-1], (37) 

with R = Lv/'17 and where the dimensionless dispersion 
relation is 

4> = 0 = >!I, 4>k/>!I = ± 1, (38) 

with all quantities measured in units of the scale length 
L and the r.m.s. turbulent velocity v. 

The immediate task before us is to solve Eqs. (36) 
and (37) for 4> and >!I, and to then look for a common 
zero of 4> and >!I as functions of the wave number k, such 
that 4>k/>!I = ± 1 at the common zero of 4> and >!I. This 
then determines the frequency as a function of k, at 
which normal modes of the ensemble average magnetic 
field exist. We must then see if any of the modes [whicl 
vary as exp(- iwt1JL-2)] exist with Imw > O. If so the 
magnetic field grows in time and we then have regener
ate kinematic dynamo activity. 12 

IV. CONSTRUCTION OF THE DISPERSION RELATION 

As in Paper 1, suppose that 4> and l}o share a simple com
mon zero at k = m and a second simple common zero 
at k = M(;o! m). Suppose further that 4> and >!I have no 
other zeros and that m and M are real. Note that 
Ja(k,K) =Jat-k,K) = Ja(k,- K) (a = 1,2,3) so that 
both 4> and >!I are symmetric under the interchange 
k -> - k. We shall also suppose that the velocity turbu
lence spectrum [defined through E(k) and H(k)] is such 
that the J a (k, K) are analytic functions in the finite do
mains of the complex k and K planes with essential 
singularities on the circle at infinity. [We demonstrate 
in Appendix A that it is possible to choose E (k) and 
H (k) so that the J a (k, K) are indeed analytic.] 
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Then as M ~ 00 (m finite) it can be shown (see Appen
dix A and also Paper 1) that 

where 

4>'(m, w) ;: a4>(k, w)/ak Ik=m' w'(m, w) ;: a>!l(k, w)/ak Ik=m' 

Equations (36) and (37) then give 

1- iwk-2 + i11R2m 2J1(k,m)(4>')-1 

= 4>(k, w) - i11R2m 24>(k, w)>!I(k, w)-1 

x [J2(k,m)(>!1')-1 + J 3 (k,m)(4>')-1] (41) 

and 

4>(k, w)[1- iwk-2 + i1TR2m2J1 (k, m)(4)')-1] 

= - i1TR2m 2>!1(k, w)k-2[ J2(k, m)(>!1')-1 + J 3 (k, m)(4)')-1]. 

(42) 
Equations (41) and (42) can readily be solved as 

follows. First set k = m in both Eqs. (41) and (42) to 
obtain 

1- im-2w + i11R2m 2J1(m,m)(4>')-1 

=- i11R2m A[J2(m,m)(>!I')-1 + J 3 (m,m)(4>')-1], (43) 

where A = ± 1 as follows from Eq. (38). 

Now differentiate Eqs. (41) and (42) with respect to k 
and then set k = m to obtain 

>!I'[1- iwm-2 + i1TR2m 2J1(m,m)(4>')-1 

= - i1TR2m24>'[J2 (m, m )(>!I')-1 + J 3 (m, m )(4)')-1] (44a) 

and 

4>'[1- iwm-2 + i11R2m 2J1(m,m)(4>')-1] 

=- il1R2l}1,[J2(m,m)(>!I')-1 + J 3 (m, m)(4)')-1]. (44b) 

From Eqs. (44a) and (44b) we obtain either 

Type 1 

>!I' = Am4>', .(45a) 

4>' =- i1TR2(1- iwm-2)-1[m 2J 1(m,m) 

+ J2(m,m) + AmJ3 (m,m)], (45b) 
or 

Type 2 

>!I' =- 4>'J2(m,m)/J3 (m,m), 

and 
(46a) 

(46b) 

But we can also compute 4>' in a different manner. 
Eliminate >!I(k, w) from Eq. (41) by using Eq. (42) to 
obtain 

Do(k, w)2 = Do(k, w)4>(k, w) + (- i1TR2m 2k-1)2 

x [J2(k,m)(>!1')-1 + J 3 (k,m)(4>')-1]2, (47) 

where 

Do(k, w) = 1- iwk-2 + i11R2m2J1 (k, m)(4)')-1. (48) 
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Now differentiate Eq. (47) with respect to k to obtain 

2Do(k, w)D~(k, w) = D~(k, w) <I> (k , w) + Do(k, w)<I>'(k, w) 

+ (- ilTR2m 2)2[- 2k-3 [J2(k,m)/<I>' + J 3 (k,m)/<I>']2 

+ 2k-2[J2 (k,m)jq,' + J 3 (k,m)/<I>'] 

x [J2(k,m)/<I>' + J 3(k,m)/<I>']]. (48') 

Consider then the application of the Type 1 and Type 
2 relations to Eq. (48). 

Type 1 derivatives 

Here Do(m, w) "t 0 and J 2(m,m)/'II' + J 3 (m,m)/<I>'"t 0, 
so when Eq. (45a) is substituted into Eq. (48) we obtain 

2[1- iwrn-2 + ilTR2m 2J1(m,m)/<I>'] 

x [2iwm-3 + ilTR2m 2J1(m,m)/<I>'] 

= <1>'[1- iwm-2 + il1R2m 2J1(m,m)/<I>'] 

- 2m-3(- ilTR2m 2/<I>')2[J2(m,m)/Am + J 3 (m,m)]2 

+ 2m-2(- ilTR2m 2/<I>')2[J2(m,m)/(Am) + J 3 (m,m)] 

x [J2(m,m)/(Am) + J3(m,m)] (48) 

where 

J~(m,m) == (a/ak)Jcx(k,m)lk=m == J~ 

We now substitute for <1>' from Eq. (45b) to obtain the 
quadratic equation 

y2[2m2J1 + J 2 + AmJ3 + m 3 J 1 + mJ2 + Am 2J 3] 
- 2y + (ilT/2)R2m = 0, (50) 

with 

For a given A Eq. (50) admits of the two solutions 

jy = 1 ± (1- YlTR2mj)1/2, (52) 

where 

From Appendix B we have that 

10 == m 2J 1 + J 2 + AmJ3 
+1 

=IT f dtJ.(1- /l)E(21/2m(1 + /1)1/2) 
-1 

(53) 

x [4 + 2/1 + 21/211.(1 + j.l)1/2a(21/2m(1 + /l)1/2)], 

(54) 
where a(x) = xH(x)/E(x) with I a I '" 1 Cramer's theorem. 

Since E(k) > 0 it follows by inspection of Eq. (54) that 
10> O. Accordingly, the signature of the real and ima
ginary parts of 1- iwm-2 is given by the signature of 
the real and imaginary parts of y. 

Also from Appendix B we have that 

+1 
j == IT f dJ.1.E(2 1/2m(1 + j.l)1/2) 

-1 

X [3 + 5/1 + 4,.,.2 + 23 / 2 Aj.l(1 + j.l)1/2 

X a(21/2m(1 +. j.l)1/2)]. (55) 

We shall return in a moment to the Type 1 dispersion 
relation (52). It is opportune at this point to consider 
the Type 2 dispersion relation. 
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Type 2 derivatives 

Here Do(m, w) = 0 and J 2/'II' + J 3/<I>' = 0 so that if 
we substitute Eqs. (46) into Eq. (49) (with k = m), we 
obtain the identity statement 0 = O. 

However, if we differentiate Eq. (48) once more with 
respect to k and then set k = m, we obtain 

[Do(m, w)]2 = <I>'D~(m, w) + (- ilTR2m )2(J2/'II' + J3/<I>')2. 
(56) 

Now when Eqs. (46) are used in Eq. (56) to eliminate 
<1>', we obtain the cubic equation 

- 4m-1hu2 + u(4m-2 - ilTR2m2J1h) + 2i1TR2m J 1 = 0, 

where u = 1- iw/m 2, h = 2m- 1 + J 1/J1• 
(57) 

Equation (57) has three roots and hence gives three 
possible frequencies. 

Altogether, then, allowing for the fact that A = ± 1, 
Eqs. (52) and (57) indicate the existence of seven pOSSi
ble modes of propagation. We must select from this 
profusion of modes those that are phYSically permissi
ble. 

V. PHYSICALLY ACCEPTABLE MODES 

There are selection processes which winnow out the 
physically unacceptable modes of Eqs. (52) and (57). 
First, as R -> 0 only those modes which reduce to iw =m 2 

are acceptable, for R -> 0 corresponds to the absence 
of any turbulent velocity field in which case the modes 
must be just the free-decay modes of a resistive me
dium. 

It might be thought that if the helicity in the velocity 
field is zero the modes should reduce to the isotropic 
modes calculated elsewhere (Paper 1). This is, how
ever, not completely correct. To emphasize the point, 
consider the relative contributions to G;u (k, w) [Eq. (15)] 
at dispersion [Le., when the dispersion relation Eq. (18) 
is satisfied]. Then at dispersion G;u is proportional to 

(58) 

no matter how the velocity turbulence is chosen [Le., 
Eq. (58) is generally true and not just for the static 
turbulence for which we have been able to obtain speCi
fic representations of the dispersion relation]. Thus at 
dispersion 

(59) 

where the first (second) factor 2 [in Eq. (59) arises from 
the symmetric (antisymmetric] part of G ;u' In other 
words there is equipartition of the Green's tensor stress 
for each Fourier mode at dispersion. And this result is 
independent of the level of the helical velocity turbu
lence-provided it is nonzero. 

The case of completely isotropic turbulence is a 
singular limit of the Kraichnan DIA equations in this 
respect. 13 We shall return to this point again (Sec. Vll). 
For the moment we content ourselves by noting that 
the reduction of the dispersion relations to the isotro
pic results in the absence of helicUy cannot be used to 
single out physically acceptable modes. 

If we apply the selection rule that, as R -> 0, iw -> m 2, 
then out of the profusion of modes we provisionally 
select three: 
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(A) From Eq. (51) we have the two modes 

1- iwm-2 = /-1(m 2J 1 + J 2 + AmJ3) 

x [1- (1-!i71R2m/)1/2], (60) 

where 

/ = 2m2J1 + J 2 + m 3J3 + mJz + Am(J3 + mJ3), (61) 

and A = ± 1. 

(B) From Eq. (57) we have the single mode 

1- iwm-2 = 2(mh)-1y , 

where 

and 

y = ')' + q- hq-1(1- is- 2,),), 

21/3q = - [h[,),(l- h) + is(l- ')')] 

- ,,{;[')'(1- ~')') + is(l - ')')]2 

+ h(1- 2')' - is)3}1/2] 1/3 • 

An alternative way of writing the cubic is 

(62) 

(63a) 

(63b) 

(63c) 

(63d) 

y3(1- £2) - 2y2 + y(l- is) + is = O. (63e) 

The cube root in Eq. (63d) is to be chosen so that 

q = - -A - t(l + 4is)1/2 + !6-1/ 2 

X [- (1 + 2is) + (1 + 4is)1/2]1/2, £ ~ 0, (64a) 

q = H- ')' + (2')')1/2(1- %')')1/2], 

s ~O, £ finite 
and 

£~o. 

In order to obtain a growing mode in Eq. (62) a 
necessary requirement is that Rey > 0, i.e., 

(64b) 

(64c) 

l == ')' + Req- hi ql-2[(I- 2')') Req- s Imq] > O. (65) 

In order to test whether it is possible to have l > 0, 
it would appear that we must solve Eq. (63d) for the real 
and imaginary parts of q. However, we shall demon
strate that this is not so, and that there is a simple way 
to see if l > O. 

Type A Modes 

In order to obtain unstable modes from Eq. (60) we 
require that / [written out explicitly in Eq. (55)] should 
change sign; for we have already shown that 
m 2J 1 + J 2 + AmJ3 > 0 for any finite m [Eq. (54)] and 
the signature of the real and imaginary parts of 
1- iwm-2 is therefore proportional to the signature 
of /. 

In order that / change sign it is necessary, but not 
sufficient, that 

q' == 3 + 51l + 4112 + 23/2Apa(21/2m(1 + 1l)1/2)(1 + 1l)1/2, 
(66) 

change sign from positive to negative in - 1 ~ Il ~ 1, 
with - 1 ~ O! ~ 1, A = ± 1. 
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If we can show that f3 > 0, where 

(67) 

in - 1 ~ Il ~ 1, then q' is intrinsically positive, and, 
therefore,! is positive; and then the Type A modes are 
oscillatory but decaying. 

To demonstrate that f3 > 0 is relatively easy. For 
suppose f3 < 0 in some domain of Il encompassed by 
-1~1l~1. 

Then 

3 + 51l + 4112 < 23/ 2 11 .. t! (1 + 1l)1/2. 

Now 3 + 51l+ 4112 > 0 in 0 ~ 11l1~ 1. 

Therefore, by squaring both sides of inequality (68) 
we obtain the requirement that f3 < 0 as 

(68) 

(69) 

Now in 1 ~ Il ~ 0 the left-hand side of (69) is intrinsic
ally positive violating the inequality .. So if f3 < 0 any
where, it must occur in 0 ~ Il ~ - 1. 

To demonstrate that this is impossible set Il = - x. 
Then for f3 < 0 in 0 ~ x ~ 1, we require 

16x 4 + 41k2 + 9 - 2x(15 + 16x2) < O. (70) 

But the left-hand side of inequality (70) can be written 

16x2(x - 1)2 + 25(x - t)2 

which is intrinsically positive. Accordingly, f3 is posi
tive, therefore / > 0 and the Type A modes are de
generative. 

Type B Modes 

In order to obtain an unstable mode from Eq. (62) we 
must check that inequality (65) is satisfied for some 
value of R, m and the helicity (other than zero) for the 
root of Eq. (63a) which reduces to y = 0 on R = O. It 
would appear at first sight that in order to do this we 
require specific functional forms of E(k) and H(k) in 
order to compute s and')' [Eq. (63b)]. And then the root 
of Eq. (62) would be model dependent. This in turn would 
lead to controversy, for suppose no unstable mode were 
found, it could then be argued that this is an artifact of 
the particular forms of E(k) and H(k) chosen. 

To circumvent such difficulties it is opportune here 
to use the asymptotic (m ~ 0, m ~ cx;) nature of the J ex 

functions in order to illustrate how the problem can be 
solved in general, irrespective of the functional form of 
the turbulent velocity field-defined through E(k) and 
H(k). 

As m ~ 0 we see from Appendix B that £(m ~ 0) a: 
m r ~ 0 for r'" 0; t:(m ~ 00) a: m ~ 00 provided the heli
city H(k) is finite. Thus for any finite value of the heli
city satisfying Cramer's theorem there exists a wave 
number m * at which £2 = 1. 

Thus as m varies between zero and infinity, ')' varies 
in 00 ~ ')' ~ ~, - 00 ~ y ~ O. Likewise, s defined by Eq. 
(63b), varies in ex: ~ s ~ 0 as m and the Reynolds num
ber R are varied. 

Altogether then it is both sufficient and necessary to 
inspect the roots of the cubic Eq. (63ef as functions of 
sand y in the above ranges. 
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The root which reduces to 

2y = 1- (1 + 4is)1/2 

as 'Y ~ i is the only physically allowable Type B mode, 
for as s ~ 0, y must tend to zero. 

Consider then the roots of the cubic (63e). If we are 
to obtain a regenerative mode, the physically acceptable 
root of Eq. (63e) (y l' say) must have Rey 1 > 0 for some 
range of y and s. Now on y = j, ReY1 < O. Therefore, 
if Rey 1 changes sign there must exist a set of 'Y, s 
values on which Rey 1 = O. 

It is simple to show that one of the roots is purely 
imaginary (Y = - is/6 on'Y = - s2/6. The other two 
roots are never purely imaginary (except on s = 0 
where one of them is finite and the other is zero). Fur
ther, in y > - s2/6 the root Y is degenerative (ReY < 0), 
while in y < - s2/6 it is regenerative [ReY > 0). The 
only question to settle is whether the Y root is, in fact, 
the same as the root y l' If so we then have regenera
tive (Le., a growing mode) kinematic dynamo action. 

In order to determine whether the mode Y "matches" 
smoothly onto the mode y l' consider the roots of the 
cubic (63e) in the limit 'Y ~- 0:), S finite. Then 

Ya = 3'Y + O(s), ReYa < 0, (71a) 

4y" = 1- is - (1- s2 + 6is)1/2 + 0(1/y), Rey" < 0, 
(71b) 

4y c = 1- is + (1- S2 + 6is)1/2 + 0(1/y), Rey c > O. 
(71c) 

Now as s --7 0 the physically acceptable mode in 
'Y --7- 0:) is y" =' Yl' But Rey" < 0 in 'Y < - s2/6, where
as ReY > 0 in'Y < - s2/6. Accordingly, the physically 
acceptable mode of Eq. (63e) always has Rey 1 < 0 for 
all allowable values of 'Y and s. Thus the Type B mode 
is degenerative. 

Altogether then for static velocity turbulence which 
gives rise to analytic J rx(k, K) over the finite domains 
of the complex k and K planes there are no growing 
modes. All modes are degenerative. This result in
cludes helical, as well as isotropic, mirror symmetric, 
incompressible velocity turbulence. 

As we shall demonstrate (Sec. VI) these exact results 
are in sharp contrast to the results obtained under the 
assumptions of first order smoothing theory (FOST), 
which is, therefore, one way to illustrate the incorrect
ness of the FOST approximation in problems of this 
nature. 

VI. THE DIA EQUATIONS, FIRST ORDER 
SMOOTHING AND HAMMERSTEIN'S THEOREM 

Let us consider once again Eqs. (36) and (37). Write 

>Jt(k, w) = kt)(k, w)Y(k, w) 

to obtain 

(72) 

and 

t)(k,w)k = [1- iwk-2 + R2 to dKK 2J1(k,K)/t)(K,W)]k 
o 

+ R2Y(k, w)-1 {O K2(t)(K, w»-1 

x (J3 (k, K) + J 2(K, W)/KY(K, W»dK (73) 

k[1- iwk-2 + R2 fO K2(J1(k, K)/t)(K, W»dK] 
o 

= - R2Y(k, w) fO K2(t)(K, w»-1 

x [J3(k, K) + J2(k, W)/KY(K, W)]dK. (74) 
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The dispersion relation for the normal modes of the 
ensemble average magnetic field is given through 

t)(k,w) = 0 and Y = ± 1. (75) 

The first order smoothing theory (FOST) result can 
be obtained from Eqs. (73) and (74) as follows. In the 
absence of helicity Y = oc and t) is finite [see L 1 or 
Eq. (16)]. So for finite helicity Yali-l, where Ii measures 
the" strength" of the helical component of the velocity 
turbulence. Then ignore the terms involving J 2 /Y com
pared to J 3 in Eqs. (73) and (74) since J 2 /Y is propor
tional to liE while J 3 is proportional to E. Here E mea
sures the" strength" of the mirror symmetric com
ponent of the velocity turbulence. [The reason for this 
approximation is that we will expand t) later in powers 
of E and this will require E« 1 in order to be valid 
at all.] 

In the remaining terms in Eq. (73) set Y = ± 1 and, 
on the right-hand side of Eq. (73), set t) = 1- iwk-2 
while on the left-hand side set t) = O. Upon so doing we 
obtain 

1- iwk-2 = - R2k 100 

K2(1 - iWK-2)-1 
o 

x [J1(k,K) ± J 3(k,K)/k]dK, (76) 

which is precisely the first order smoothing result 
obtained elsewhere (Krause and Roberts, Lerche, Ref. 8). 

But Eq. (76) is not correct. This can be shown in 
several ways. The simplest, for our purposes, is to 
suppose that we can set Y = ± 1 in Eq. (73) to obtain 
an equation for t) of the form 

00 b(k, K) 
t) = u(k, w) +.£ --- dl<, 

o t)(K, w) 

where a and b are known. 

(77) 

Equation (77) is in Hammerstein's normal form 
(Hammer stein, 1930)14 and we can apply Hammerstein's 
theorem to it. This theorem says that there exists a 
uniformly convergent apprOXimation to the nonlinear 
equation provided that, for all t) 

(78) 

where C 1 and C 2 are positive constants. 

In our case f 0: 1/t) and since I t) I [C 11 t) I + 2C2 ] is 
not greater than lInt) [ for all t) (we note that we are 
interested in the zeros of t), there does not exist a 
uniformly convergent approximation to Eq. (77). In other 
words, first order smoothing theory is inaccurate (see 
e.g. Lerche and Parker). Kraichnan has demonstrated 
this inaccuracy of first order smoothing theory under 
a much wider class of conditions than we are concerned 
with here. For our purposes the above argument is 
sufficient to illustrate the nonuniformity of convergence 
of the FOST results. 

Further, if we consider the behavior of Eq. (76) it 
indicates the presence of growing (Le., Imw > 0) modes 
in the long wavelength k --7 0 limit (Krause, Lerche, 
Krause and Roberts). But the exact calculations (Sec. V) 
demonstrate that there are no growing modes-all modes 
decay. This illustrates directly that one cannot treat 
violations of Hammerstein' s theorem lightly. 

VII. DISCUSSION AND CONCLUSION 

In this paper we have set up the general Kraichnan 
equations applicable to the turbulent kinematic dynamo 



                                                                                                                                    

1586 I. Lerche: Application of Kraichnan's direct interaction approximation. II 1586 

problem under an homogeneous, stationary turbulent 
velocity field which is incompressible, isotropic, but 
not mirror symmetric. 

We demonstrated that when the helicity of the velocity 
field is nonzero then the Green's stress tensor enjoys 
equipartition between its symmetric and anti symmetric 
parts at 'the normal modes of the average magnetic 
field. For zero helicity this is not true, for then there 
is no antisymmetric part to the Green's stress tensor. 
In some sense, then, the zero- helicity limit is a singu
lar limit of the nonlinear Kraichnan integral equations. 
We do not yet completely understand the physics under
lying this singular behavior. Mathematically, it arises 
because the degree (and number) of the nonlinear equa
tions is reduced in the absence of helicity, and under 
such conditions some kind of singular behavior often 
occurs. 

We solved the Kraichnan equations exactly when the 
velocity turbulence was homogeneous and static, and 
we obtained the dispersion relation describing the nor
mal modes of the magnetic field. We demonstrated that 
all of the phYSically acceptable modes of the dispersion 
relation gave rise to degenerative (Le., decaying modes) 
kinematic dynamo activity. There are no growing 
modes. These results are in sharp contrast to the 
first order smoothing theory apprOximation, which gives 
rise to growing modes in the presence of helical velo
city turbulence (Krause and Roberts). 

The resolution of this difference in results was shown 
to be the inapplicability of the first order smoothing 
theory approximation to the Kraichnan equations, for 
the Kraichnan equations do not satisfy Hammerstein's 
theorem while FOST requires satisfaction of Hammer
stein's theorem in order to be valid at all. This point 
has been stressed in more general circumstances than 
we are concerned with here by Kraichnan. 

In summary then, what we have shown is that the pre
sence of helicity in the velocity turbulence is not suffi
cient to guarantee growing modes, contrary to the re
sults of approximate treatments based on FOST-which 
is an invalid approximation (Kraichnan; Lerche and 
P.arker). 

If there is to be any growth of the average magnetic 
field it cannot come from static velocity turbulence. 
Therefore growing magnetic fields may occur only when 
the velocity turbulence is time dependent. Unfortunately, 
the Kraichnan equations are then suffiCiently complex 
that, so far, we have been unable to solve them exactly. 
And an exact solution is necessary if we are to place 
any confidence in the solution. We are still working on 
this problem and any further progreess will be reported 
in due course. 
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APPENDIX A 

Here we demonstrate two points. First that it is 
possible to choose the velocityturbulence spectra E(k) 
and H(k) (subject to Cramer's theorem) so that the 
J a(k , K) are analytic in the finite domains of the complex 
k and K planes. Secondly that Eqs. (39) and (40) are 
valid when the J a(k, K) are analytic in the finite domain. 

J. Math. Phys., Vol. 14, No. 11, November 1973 

A. The velocity turbulence spectra and analyticity of 
Ja(K, K) 

In order to illustrate the point choose 
kH(k) = E(k)vk(k 2 + 1)-1, (AI) 

with 21/2 v < 3, so that 

- E(k) ,., kH(k) ,., E(k), all k. 

Further choose, for example, 

E(k) = k4(k2 + 1) exp(- k 2). (A2) 

Then it is a simple matter to demonstrate that all the 
J a(k, K) are analytic in the finite domains of the complex 
k and K planes with essential singularities of the form 
exp[- (k ± K)2] on the circles at infinity. 

The chOice (AI) and (A2) is by no means unique. It 
is chosen merely to demonstrate that it is possible to 
find a class of H(k) and E(k) which give rise to analytiC 
J a(k, K). 

B. The integrals (39) and (40) 

In order to illustrate the general method of obtaining 
the results (39) and (40) consider the integral 

1= JOO 2 J(k, K) d 
-00 K D(K) K, (A3) 

where ± (m + it) and ± (M + it) (M > m) are zeros of 
D(K) = 1- iWK-2 + .A 1J(k,m) + .A2J(K,M) occurring at 
K = ± (m + it), K = ± (M + it) with £ ~ + O. Further, 
.A 1 and 11.2 are functions only of m, M , and w. 

Upon performing a contour integration in complex 
K space around a semicircle in the upper half complex 
K plane we see that the integral I converges on the semi
circle at infinity if k < M. [We have in mind that both 
E(k) and H(k) will vary as (powers of k) x exp(- k 2) at 
large k.] 

And then 

( 
J(k,m) J(k,M) ) 

I = 21Ti m 2 + M 2 k < M, 
D(K =m)' D(K =M)' ' (A4) 

where 

(A5) 

Now let M ~ ce, so that 

I(M ~CXJ) 0: J(k,m), all finite k. 

Then if we assume that both <I> and 'It can be written 
in the form 

3 

<I> or 'It = 1- iWK-2 + ~ [.AjJ; (k, m) + f:lJj(k,M)], (A6) 
j~1 

we obtain Eqs. (39) and (40) as M ~ CXJ. This demon
strates that by assuming <I> and 'It have the form (A6) the 
integral Eqs. (34) and (35) show that <I> and 'It do have 
the form (A6) provided a dispersion relation is satis
fied for W as a function of m. 

APPENDIX B 

Consider 
+1 E(lk+ml) 

J 1 (k , m) = 21T i 1 (1 - /L2) 1 k + m 12 d /L , (Bl) 

where 1 k + ml 2 = k 2 + m 2 + 2km/L. 
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Then 
+1 

J 1(m,m) = 1Tm-2 il dlJ.(l- IJ.)E(m2 1/2(1 + 1J.)1/2) (B2) 

and 
+1 

J1(m,m) -lTm-3 I dp.(l- 31J.)E(m2 1/2(1 + 1J.)1/2). 
-1 (B3) 

Likewise, 

and 

IJ.)E(m21f2(1 + 1J.)1/2) 
(B4) 

+1 
J2(m,m)::- lTm-1 I_I dll(l- 611)(1 + IJ.) 

x E(m21/2(1 + 1J.)1/2) (B5) 

Also, 

1
+1 

J
3
(m,m) = 21f dll(l- 1J.2)H(m2 lf2 (1 + 1J.)1/2) 

-1 
(B6) 

and 
+1 

J;(m,m) =- 21Tm- 1 I dlJ.(l + p.)(1- 31J.) 
-1 

X H(m21/2(1 + 11)1/2). (B7) 

For small k --70 let E(k) --7 Eok2n. Then, by Cramer's 
theorem 

H(k) --7 exEok2n-lH, 

with r ." 0; and, if r = 0, I ex I <;; 1, while if r> 0 then ex 
is real but arbitrary as k --7 O. 

Then as m --7 0 we have 
+1 

J1(m,m) = 1fEo2nm2n-2 I (1- p.)(1 + ll)ndll 
-1 

Ji(m,m) = 

(B8a) 

(B8b) 

+1 
J2(m,m} = wEo2nm2n I (3 + 211)(1- 11)(1 + ll)ndll 

-1 

== j2m2n, (B8c) 

+1 
J,2'(m,m) = wEo2nm2n-1 I (1 + 611)(1 + ll)n+1dll 

-1 

== j2m2n-1, (B8d) 

J3 (m,m) = 2waEo2n-I/2H/2 

+1 
m 2n- 1H I (1- 11)(1 + ll)n+l/2+rl2dlJ. 

-1 

(B8e) 
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J;(m,m) =- 2waEo2n-1/2+r/2 
+1 

x m 2n-2 H f (1- 31J.)(1 + lJ.)n +1/2 H/2dlJ. 
-1 

== j;m 2n- 2H• (B8f) 

At large m(» 1) since E(k) has a scale of unity we 
proceed as follows. Write (1 + 1l)2m2 = x in Eqs. (B2)
(B7) so that, for example, 

4m2 

J 1(m,m)=!wm-4 1 E(x 1/2)(2-x/2m2)dx. (B9) 
o 

Since E declines over a scale of unity then as m --700, 

we have 

In like manner, we obtain as m --7 00 that 

Ji.(m,m) --7- (2/m)J1(m,m), 

J2(m,m) --7 J1(m,m), 

711 1"" J' (m m) --7- - m-5 xE(xl/2)dx = - & m-5 
2' 4 0 - l' 

(BI0a) 

(BlOb) 

(BlOc) 

(BIOd) 

(BI0e) 

(B I Of) 
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can be written <I> = a(k) + fb(k, K)f(K, <I>(K»dK. 
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approximation to kinematic dynamo theory. III. Solution 
of the Kraichnan equations under Parker's 
"short-sudden" conditions 
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Using Parker's "short-sudden" conditions, we solve the Kraichnan equations exactly. We find that 
the nonnal modes of the ensemble average magnetic field have very different properties in this case 
than when the velocity turbulence is static, which situation was investigated in earlier papers in this 
series. We have done this calculation for two reasons: first because exact solutions of the Kraichnan 
equations are few in number, and second because the nonlinearity and singularity of the Kraichnan 
equations is such as to emphasize the physical difference in the properties of the nonnal modes of 
the average magnetic field under a small change in the prescription of the turbulent velocity field. 

I. INTRODUCTION 
Since the invention of Kraichnan'sl direct interaction 

approximation for investigating turbulence problems, 
considerable effort has gone into trying to solve the re
sulting nonlinear Kraichnan equations. This effort is 
warranted because the Kraichnan equations describe 
exactly an ensemble of physically possible dynamical 
systems. As such their exact solutions are of interest, 
for they can then be used as templates against which 
one can compare and contrast approximate treatments 
of the same problems. This in turn outlines the regime 
of applicability (if any) of the approximate methods. 
Further, Frisch2 has noted that a model turbulence 
problem described by the Kraichnan equations is an 
accurate approximate description of the true turbulence 
problem for all values of the parameters involved. As 
such the model problem is both physically realizable 
and acceptable. 

In the previous papers in this series [Lerche, Ref. 3 
a, b-hereinafter referred to as Ll and L2] we have set 
up the Kraichnan equations describing kinematic dyna
mo activity in an infinite medium under a turbulent 
velocity field which is statistically homogeneous and 
stationary. We showed that when the velocity turbu
lence was static the Kraichnan equations were soluble 
and that (i) for incompressible isotropiC, mirror sym
metric velocity turbulence all the normal modes of the 
ensemble average magnetic field were degenerative 
i.e., decaying); (ii) including a helical component in the 
velocity turbulence, and maintaining incompressibility, 
gave rise to solely degenerative kinematic dynamo 
activity. In other words, the presence of helicity is not 
sufficient to guarantee regenerative dynamo action. 

When the velocity turbulence is not static, the degree 
of nonlinearity, and the complexity, of the Kraichnan 
equations is such that, in general, we have not been able 
to obtain their general solution. We should also point 
out that the number of exact solutions of the Kraichnan 
equations is small. 

There is, however, one time dependent form of veloci
ty turbulence for which we have been able to construct 
exact solutions of the Kraichnan equations. We give here 
the results of those calculations for they give rise to a 
very different behavior than was obtained (Ll, L2) under 
static velocity turbulence. 

II. BASIC EQUATIONS 

In the previous papers in this series (Ll, L2) we ob
tained the nonlinear singular integral equations des-
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cribing kinematic activity under incompressible, homo
geneous and stationary velocity turbulence. We also 
remarked that we were unable to solve them in general, 
and, in fact, we could solve them then only when the 
velocity turbulence was static. Since that time we have 
found a method of solving the equations under Parker's4 
"short-sudden" conditions-which occurs when both the 
time-scale and spatial scale of the turbulent velocity 
field are infinitesimal compared to any other time and 
space scales under consideration. 

In view of the interest in the problem of large scale 
magnetic field generation by turbulent velocity fluctua
tions, we give here the method of solution and the re
sults; first, because they represent statistically exact 
solutions to the Kraichnan equations (and very few 
such solutions are known); secondly, because the method, 
or some variation of it, may be of more general use 
than for Parker's short-sudden limit-although we have 
not yet been able to generalize it; thirdly, because the 
results obtained from the Kraichnan equations describe 
exactly an ensemble of dynamically possible systems; 
and fourthly, because the results are preCisely those 
obtained by Parker4 using a very different approach. 

The notation is the same as that in Ll and L2. 
Further, the two situations to be described are,prime 
facie, so different mathematically that we consider each 
separately, and compare and contrast the results later 
(Sec. III). 

A. Incompressible, isotropic, mirror symmetric 
turbulence 

From Ll Eq. (58) we have 

<t>(k,w) = 1- iwk-2 +R2 tlO 1(2J(k,K,W - w')dW'/<l>(K,W'), 
o 

(1) 
where the normal modes of the ensemble average mag
netic field are given through 

<l>(k, w) = o. 

Further, 
+1 

J(k,K,W-W')=21T L1 dJ.l.E(Ik +ICI, 

(2) 

x w - w')(1 - J.l.2}1k + 1(1-2 , 

with 
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Also 

(v;Cx, t)vj(x ' , t'» =Rjj(x -x', t - t'), 

Rjj(k,w) == J d3xdtR jj (x, t) exp[i(kx - wt)] 

= E(k, W)(Oij - ki'Sk-2), 

where E(k, w) .. 0 by Cramer's5 theorem. 

Also R is the magnetic Reynolds' number. 

When the velocity turbulence occurs over a time
scale which is infinitesimal compared to any other 
time-scale of interest we write E(k, w) = E(k) to obtain 
from equation (I); 

4>(k,w) = 1- iwk-2 +R2 (0 K2J(k,K)dK .C dw l /4>(K,W /). 

(3) 

The integral over Wi in Eq. (3) cannot be completed by 
closure in an arbitrary domain of the complex Wi plane. 
This arises because for t < 0, G(t) = 0, where G(t) is 
the Green's function [see Ll, Eq. (3)]. The Wi integration 
path must pass above all poles and branch cuts (if any) 
of the integrand with closure in the lower half complex 
wi-plane for t> O. 

To effect a solution to Eq. (3) is now relatively simple. 
We start by assuming a form for 4>(k, w) and then prove 
that the assumed form does indeed satisfy Eq. (3). In 
other words we make a priori assumptions and justify 
them a posteriori. To this end assume a priori that 
4>(k, w) has only a single, simple zero in the complex w 
plane at w = n(k) and that 4>(k, w) can be written in the 
form 

4>(k, w) = a(k)[w - n(k)]. (4) 

Then 

("dw ' /4>(K, Wi) =-i1f/a(k). '-00 (5) 

When Eqs. (4) and (5) are used in Eq. (3) we obtain 

a(k)[w - n(k)] == 1 - iwk-2 _ i1fR2 [00 K2J(k, K)dK/a(K). 
'0 

(6) 

But if the assumed form (4) is indeed a solution of 
Eq. (3), then Eq. (6) must be true for all values of w. This 
demands that 

a(k) = - i/k 2 , 

and that 

in(k) = k2 (1 + 1fR2 fO K4J(k, K)dK). 
o 

(7) 

(8) 

It is evident by definition that J(k,K) ? O,for all real 
k and K. Accordingly,m(k) > O. Now the normal modes 
of the large-scale magnetic field are given through 
4>(k,w) = 0 [Ll,Eq. (2)]. This yields the dispersion 
relation 

w = n(k). (9) 

The normal mode time dependence was chosen (Ll) to 
be of the form exp(- iwt) == exp[- m(k)t]. But m(k) > O. 
So all normal modes of the large scale magnetic field 
decay under incompressible, isotropic, mirror symmet
ric, velocity turbulence when Parker's "short-sudden" 
conditions are in force. 
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B. Incompressi/lle, helical velocity turbulence 

When the velocity turbulence contains a helical com
ponent as well as a mirror symmetric component, we 
have [L2,Eqs(34) and (35)]. 

1 - iwk-2 +R2 .rooo dKK2J 1 (k,K) L: dw l /4>(K,W /) 

= 4>(k, w) _R24>(k, w)[F(k, w)-1 {'O K2dK (0 dw ' o -00 

and 

4>(k, w)(1 - iwk-2 + R 2 {O K2dKJ1 (k, K) .C: dw ' /4>(K, w'» 

= -R 2k-2F(k, w) 1000 
dKK2 .~oo dw'[J2(k,K)/F(K, w') 

(11) 

In this case 

and, by Cramer's theorem, 

E(k, w) .. 0; - E(k, w) ",; kH(k, w)",; E(k, w) (13) 

Further, 

+1 
J 2(k,K,w) = 21f J dfJ.(1 - fJ.2)lk + KI-2(k2 

-1 

+ Ik +KI2)E(lk +KI,w), (14b) 

with 

In this case the normal modes of the large-scale 
magnetic field are given through 

4>(k, w) = 0 = F(k, w), 4>(k, w)k/F(k, w) ::: ± 1. (15) 

We consider Eqs. (10)' and (11) under Parker'S "short
sudden" conditions, i.e., when the replacements E(k, w) = 
E(k), H(k,w) :::H(k) are valid. AccordinglY,we have 
written the Jcx(k,K,W) in Eqs. (10) and (11) ignoring the 
frequency dependence. 

In order to solve Eqs. (10) and (11) under Parker'S 
short-sudden conditions, we have to be more circumspect 
than in the case of incompressible, isotropic, mirror 
symmetric, velocity turbulence (case A). Note, once 
again, that the w' integrals are to be completed by 
closure in the lower half complex w' plane. 

Assume a priori that 

(0 dw'/F(K, w') ::: O. 
• -00 

Also we assume a priori that 

roo dw ' /4>(K,W') :::-i1f/a(K), 
• -oc 

(16) 

(17) 

where a(K) is, as yet, undetermined. We shall solve Eqs. 
(10) and (11) under a priori assumptions (16) and (17) 
and check to ensure that the solution does indeed satisfy 
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the assumptions. Using Eqs (16) and (17), Eqs. (10) and 
(11) yield 

1 - iwk-2 - irrR2 Ioco K2J1(k,K)dK/a(K) 

= <I>(k, w) + irrR 2<I>(k, w)[F(k, w)]-1 

x J: K2J 3 (k, K)dK/a(K) 

and 

<I> (k, w)[1 - iwk-2 - irrR 2 IoCO K2J 1 (k, K)dK/a(K)] 

(18) 

= irrR 2k-2F(k, w) IoCO K2J3 (k, K)dK/a(K). (19) 

Use Eq. (19) to eliminate F(k, w) from Eq. (18). Upon 
so doing we obtain 

<I>(k, w) = U-1[U2 - k-2(irrR2 loCO K2J3 (k, K)dK/a(K))2], 
(20) 

where 

U = 1 - iwk-2 - irrR 2 loCO K2J1 (k, K)dK/a(K). 

Then it follows from Eq. (20) that 

Ioco dW'/<I>(K,W') = rrK-2 , 

so that 

a(K) = - iK-2. 

Then 

(21) 

(22) 

(23) 

<I>(k, w) = U-1[U2 - (rrR 2k-1 Ioco dKK 4J3 (k, K))2], (24) 

where 

U = 1- iwk-2 + rrR2 Ioco K4J1(k,K)dK. (25) 

Equation (19) then gives 

F(k, w) = - <I>(k, w)Uk2(rrR 2 IoCO K4J 3 (k, K)dK)-1 (26) 

Now the dispersion relation for the normal modes of 
the large scale magnetic field is given through 

<I> = 0 = F, <I>l?/F = ± 1. 

From Eqs. (24), (25), and (26) we see that this occurs 
when 

(27) 

When (27) is satisfied, then <I> = 0 = F and <I>k/F = ± 1 
occur simultaneously. The remaining question, then, is 
whether the a priori assumption (16) is satisfied. By 
using Eqs. (24) and (26) we see by inspection that it is 
indeed verified a posteriori. 

Accordingly, Eqs. (24), (25), and (26) represent a solu
tion to the Kraichnan equations under Parker's short
sudden conditions. 

The dispersion relation (27) for the normal mode fre
quencies of the ensemble average magnetic field gives 

iw = k 2 (1 + rrR2 Ioco K4[J1 (k,K) ± k-1J 3 (k,K)]dK), (28) 

which is precisely Parker's result when the correlation 
length L ~ O. One of the modes given by Eq. (28) is un
stable, i.e., regenerative dynamo a£tion occurs at some 
wave number provided only that Io K2H(K)dK '" 0, as 
was first shown by Parker. He used a series expansion 
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of the magnetic induction equation and then demonstra
ted convergence of the series in the infinitesimal scale 
length, infinitesimal time limit (for the turbulent velocity 
field). Hence the name "short-sudden" conditions. 

IiI. COMPARISON OF THE RESULTS 

There are two questions to be discussed here. First 
there is the question of the range of validity of the re
sults (8) and (28), second there is the question of their 
physical interpretation. 

A. The "short-sudden" limit 

In the form used in this paper (viz. ignoring the fre
quency dependence of the turbulent velocity correlation 
tensor) it appears that the "short-sudden" conditions 
make use only of the "sudden" part, i.e., we have used 
an infinitesimal time-scale for the turbulent velocity 
fluctuations but we do not ap'pear to have assumed an 
infinitesimal spatial scale for their occurrence. 

This is, however, not completely correct. From 
Cramer's theorem we must have 

(29) 

for physically acceptable turbulence spectra. Now when 
we choose an infinitesimal time-scale for the velocity 
turbulence we are taking Rij(k, w) to be independent of 
w. 

Then write Ri · (k, w) = Ri . (k) to obtain 
R2 I IRij (k,w)ld3kdw =R2{3'T-1 with 7'"1 = I dw, {3 = 
J IRij (k)ld3k < 00. 

And {3 is finite, 'T is infinitesimal. 

The combination entering the dimensionless normal 
mode equations (8) and (28) (or for that matter entering 
the Kraichnan equations) is justR 2k 2 • Then if we wish 
to have a finite correction to the free-decay modes in 
dimensional form, we require (write k ~ k/ L where L 
is the correlation length of the velocity turbulence) 

R2/L2 == v2/T/ 2 = finite. 

But in order to satisfy Cramer's theorem we require 

£2v2 /(T/ 2 'T) = finite, 

i.e., L20/'T. 

But 'T is infinitesimal. Accordingly so is L. And then 
we have to have infinitesimal turbulence occurring at an 
infinite rate (LiT ex r1/2 ~ (0) which is precisely 
Parker's short-sudden condition. 

B. Interpretation of Equations (8) and (28) 

It is correct to note that if the helicity is set to zero 
in Eq. (28), the helical modes dispersion relation re
duces to Eq. (8)-the isotropic dispersion relation. It 
is not correct to argue that this limiting procedure is 
uniform. This arises because we have shown elsewhere 
(L2) that when any finite amount of helicity is present in 
the velocity turbulence, then the Green's magnetic stress 
tensor, which occurs in the Kraichnan equations, enjoys 
equipartition of its symmetric and antisymmetric parts 
in Fourier space at the normal mode values of the fre
quency. When the helicity is zero the antisymmetric 
part of the Green's tensor is zero under all conditions 
and so no equipartition statement is available. In other 
words, as far as the Green's magnetic stress tensor is 
concerned, passage to the limit of zero helicity is a 
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singular limit. As far as the dispersion relations (8) 
and (28) are concerned passage to the limit of zero 
helicity is a well-behaved process. Accordingly, some 
care must be exercized when comparing and contrasting 
the implications and predictions of the normal mode 
dispersion relations with, and without, helicity in the 
turbulent velocity field. 

We note here that in the absence of helicity there 
appears to be just one normal mode of the ensemble 
average magnetic field [Eq. (8)] which, under Parker's 
short-sudden conditions, is always decaying. When the 
helicity in the turbulent velocity field is nonzero the 
normal modes are two in number. The implication of 
this appears to be that the presence of helicity causes 
a bifurcation of a single mode (with no helicity) into two 
modes (an analogy which is suggestive is the lifting of 
degeneracy in atomic energy levels by L-S coupling 
or hyperfine splitting). 

Further, note [Eq. {28}] that one of the bifurcated 
modesoois unstable at some wave number provided only 
that fo K2H(K)dK ;c O. And this in turn is a somewhat 
singular behavior; for in the absence of helicity the mode 
is stable [Eq. (8)]; in the presence of helicity, no matter 
how small, the mode is unstable. 

We have pOinted out elsewhere (Lerche and Parker, 
Ref. 6) that the results obtained using first order smooth
ing theory are, in general, in error. 

The work of Moffatt7 is of interest in this regard. 
His early results 7a use first order smoothing theory
but fortunately he eventually takes the "short-sudden" 
limit. Under that limit his results are identical to 
those obtained by Parker and agree with those obtained 
here. In his later work Moffat7b ,c showed that inertial 
waves in a rotating fluid possess helicity. Essentially 
his turbulent velocity field is a function of x - Xf -

!!o(t - tf) where !!o is the inertial wave speed. Under 
the short-sudden limit he obtained kinematic dynamo 
action. This situation is not covered in the present 
paper,for it would entail writing Rjj(k, w) ex: 6(w - k. vo)' 

Needless to say we would be interested in seeing if 
Moffatt's (Ref. 7c) results follow from the Kraichnan 
equations under this speCification for R j .• So far we 
have been unable to solve the nonlinear 'kraichnan 
equations under this form of turbulence. 

IV. CONCLUSION 

In this paper we have given exact solutions to the 
Kraichnan equations which describe kinematic dynamo 
activity in a physically realizable ensemble. The solu
tions, and their attendant normal modes, are valid under 
Parker's short-sudden conditions. And the normal 
modes in the presence of helical velocity turbulence are 
preCisely these obtained by Parker who used an expan-
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sion procedure for the "true" turbulence problem. In 
other words, Kraichnan's model turbulence problem is 
indeed an accurate approximation to the true turbulence 
problem, by direct computation. And this bears out 
Frisch's remark (see the Introduction). 

What we now require is a generalization of the method 
given here (or some other method) for solving the 
Kraichnan equations (1), (10), (11) exactly under time 
dependent velOCity turbulence. Exact solutions are re
quired for, as we have pOinted out elsewhere (Ll, L2), 
the Kraichnan equations do not satisfy Hammerstein's 
(1930) theorem; accordingly, they do not possess a uni
formly convergent expansion in any variable. 

Until such time as a general method of solution is 
available we point out that (i) the exact nature of the 
singular behavior as the helicity component of the turbu
lent velocity correlation tends to zero is not clearly 
delineated,in that we have only mapped out its be
havior under the "short-sudden" conditions; (ii) the gen
eral class (both spatially and temporally) of incompres
Sible, homogeneous, stationary turbulent velocity fields 
which will give rise to regenerative kinematic dynamo 
activity is not yet known [static turbulence (Ll, L2) 
always give decay even when a helical contribution is 
included, short-sudden turbulence gives decay unless a 
helical contribution is included]. Somewhere between 
these extremes there must exist a general criterion 
which is both suffiCient, and necessary, to guarantee 
either decay or growth of the normal modes of the en
semble average magnetic field for a given turbulent 
velocity field. And by this we mean that given E (.Ii!, w) 
and H(k, w) there must exist a relation which says that 
if certain integrals (as yet unknown) over k and ware of 
a particular form, or exceed certain (unknown) values, 
then regenerative kinematic dynamo action is possible. 

We would be interested in seeing any calculations re
lating to these pOints. 
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A Volterra equation on the infinite interval with a logarithmic kernel multiplied by a small 
parameter is analyzed. A Laplace transform solution is found; also, an approximate solution is given 
and proved to be uniformly asymptotic as the small parameter tends to zero for all time. The 
solution has an algebraic-logarithmic decay for large times. The Volterra equation is a model for the 
transport of charged particles in a random magnetic field. 

1. INTRODUCTION 

A model for cosmic ray transport has been construct
ed1 ,2.3 which preserves the long-range character of 
the interaction given by the quasilinear approximation 
between charged particles and a random magnetic field. 
The kernel decays as the reciprocal of time t- 1 and the 
standard adiabatic approximation is not valid. 

The model governing the cosmic ray flux F = F(t; 01) is 
the integrodifferential equation 

i = - OIK* F - a, t> 0, F(O; 01) = 1, 01 > 0, (1. 1) 

where 

and 

• aF 
F = - (t; 01), 

at 

K(t) = 1/(1 + t). 

t 
K*F = 1 drK(t - r)F(rj 01) o 

The source a = aCt) represents the density gradient and 
K in not integrable on (0, co). The parameter 01 is small. 
Our goal is to obtain an approximation to the solution of 
Eq. (1.1) that would be valid for all t, including when 
t ~ co. One way to solve this problem is through Laplace 
transforms. The equation can be readily rewritten in 
Laplace transform variables and a solution can be ob
tained in terms of a contour integral. The explicit com
putation of this integral is a nontrivial task. In this paper, 
we calculate the long time behavior and prove that it is 
asymptotic as 01 ~ O. We also give rigorous justification 
for the use of Laplace transforms. 

Alternatively, we find an approximation for the kernel 
of the integral equation and the resultant equation is 
simply and exactly solvable. It turns out, perhaps for
tuitously, that this solution is a uniformly valid asymp
totic approximation to the exact solution; that is, the 
approximation differs from the exact solution by an 
amount which tends to zero with 01, uniformly in the 
interval, 0 ~ t < co. Also, for long times, the relative 
error tends to zero with 01. We prove this fact. We also 
verify that the long time behavior of this method coin
cides with the long time behavior of the Laplace trans
form solution. 

2. HOMOGENEOUS EQUATION 

Consider the homogeneous integrodifferential equation, 
with a = 0, 
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j = - OIK*j, t> 0, 01>0 (2.1) 

with initial condition 

j(O;OI) = 1, 01 > O. 

If the solution j = j(tj 01) is known, the solution of the in
homogeneous equation can be found by quadrature, 4 

F =f- a*j. (2.2) 

Hence, first we investigate the homogeneous integro
differential equation. In particular, we are interested 
in the limit as 01 ~ 0+. Upon integrating, Eq. (2.1) is 
written 

j = 1 - OI[(*j, (2.3) 

where K(t) = J~ drK(r). This is a Volterra equation of 
the second kind with kernel - 01 In(l + t). 

3. LAPLACE TRANSFORM SOLUTION 

We are interested in obtaining a uniformly valid asymp
totic approximation to the solution of Eq. (2. 1) that 
would accurately describe the decay of cosmic ray flux 
for all time. The usual Neumann series expansion in 
powers of 01 is a poor approximation. This is because 
for large t the terms of the series are majorized by a 
power of 'OIt In t which becomes unbounded with t. 

Since Eq. (2. 1) can be written as a convolution-type, 
Volterra equation or renewal equation, as in Eq. (2. 2), 
the Laplace transform is appropriate for finding a solu
tion. This solution is found below as a contour integral 
and is put into a more usable form by means of an equi
valent contour. While this Laplace transform solution 
is still rather complicated, it provides an exact solution 
which can be compared with the Simpler uniformly valid 
approximation found in Sec. 4. 

A. Justification for use of Laplace transforms 

The following result justifies the use of the Laplace 
transform: 

Lemma 3.1.' Let 0 < 01 < 01 0 , If j(tj 01) is a solution 
of Eq. (2. 3), then jet, 01) is of exponential order for 
t=::O and is unique. 
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Proof: The first part is a direct consequence of 
Lemma 7. 1 of Bellman and Cooke3 and the uniqueness 
part relies on the same estimates as the first part. This 
is because fOf some a > 0, 

100 
dte-at 1- (IIK(t) 1 == (IIa-1e aE I (a), o 

where 

E 1 (a) == JOO dte- tt- 1 
a 

is the exponential integral and 

(IIa-1eaEI (a) = (IIa-2(1 - e a JOO dte-tt 2) ~ (IIa-2 
a 

(3.1) 

is less than unity when a > ~. This establishes the 
exponential order of the solution. Uniqueness follows 
from the estimate 

sup IU(T)I~ (IIa-1e aE 1(a) sup IU(T)I, 
QST::St Qsr::st 

so that u(t) == e- at(j1 (t; (II) - f 2 (t; (II» = 0, where it and 
fz are two solutions of Eq. (2. 3). 

B. Formal laplace transform solution 

Transforming both sides of Eq. (2.3), one obtains, 
- -
f(s; (II) = S-1 - (IIS-1e SE 1 (s)f(s; (II), 

where the Laplace transform is defined as 

j(s; (II) = 100 
dfe-stf(f; (II). o 

It follows that 

f(s; (II) = (s + (IIe S E I (S»-1, 

provided 

D(s;(II) == (s + (IIe S E 1(s»;o< O. 

The formal inverse is given by the contour integral 

1 ja+ioo 
f (t. (II) = - dsets[D(s· (11)]-1 
I' 2ITi a-ioo " 

(3.2) 

(3.3) 

(3.4) 

where a > 0 such that [D(s; (11)]-1 has no singularities 
for Re[s] =:: a. In Appendix A, we prove that D(s; (II) has 
only two zeros and in Appendix B we prove that the 
inverse fI(f; (II) is the solution of the equation. In Appen
dix C, we find an equivalent contour where the solution 
is simpler but not simple to evaluate. 

c. Boundedness of solution 

The alternate form of the solution in terms of residues 
and a branch integral permits proof of the following 
assertion: 

Theorem 3.1: f is bounded uniformly for .0 ~ t < 00 
and for sufficiently small positive (II; in fact,f (t ; a) is 
absolutely integrable. 

Proof: First, we show that j(t; (II) is absolutely in
tegrable. Since the kernel, Eq. (C3) of Appendix C, of 
the branch cut integral behaves as 

k 1(x;(II) ~ «(II Inx)-2 as x-> 0+, 

k1(x;(II) ~ x-2e-x as x-> + 00, 

and is otherwise continuous, the branch integral 

I(t ; (II) = - a Iaoo 
dxe -x t k 1 (x; (II) 

J. Math. Phys., Vol. 14, No. 11, November 1973 

1593 

converges uniformly and 
• t 00 

f(t;a) = 2 Re[so(3oe sa ] + (II 10 dxe-xt xk 1(x;(II). 

f (t;(II) is continuous on [0, T] for any T> O. Hence, 

Ij(t;(II)1 ~ 2 ISoi3oleRe[salt + (II Iaoo 
dxe-xtxk 1(x;(II) 

and 

t dTIj(T; (II) 1 ~ 21 so(3o 1 Re [so] 1 + 2 Re[(3o] - 1, o 

since kl > 0, Re[so] < 0 and 1 = f(O; a) = 2 Re[(3o] 
- a fo 00 dxk 1 (x; (II). 

Using the estimates of So given in Appendix A and the 
fact that f(t; (II) = 1 + fa dTj(T; (II), we find that 

If(t; (11)1 ~ 1 + Iat 
dTIj(T; (11)1 < 6.5 for (II < (111) 

which states that If(t;(II)1 is bounded uniformly. 

The following fact is important enough to state by itself 
even though it was just used in proving the above. 

Corollary: j(t; (II) is aboslutely integrable. An 
immedia~e consequence of the above absolute integra
bility of f is the boundedness of the solution of the in
homogeneous equation, Eq. (1. 1). We may write 3 

F = 1 - a + (1 - o)*f where a = t dTCJ(T). (3.2') 
·0 

Hence we have the following: 

Corollary: If the integral of the source term a is 
bounded, then the solution F of Eq. (1. 1) is bounded. 

D. Decay of the solution as t -'> 00 for fixed a 

Since Re[ so] < 0 for sufficiently small (II, the residue 
contribution, 2 Re[(3oe sat], is of exponentially small 
order as f -> 00 and fixed (II. Therefore, we need only 
investigate the decay of the branch integral, Eq. (C2) 
of Appendix C: 

I(t; (II) = - (II {' dxe-(t+ Ilx/ G 1 (x; (II), 

where we now write 

G1(x;(II) =g~(x;(II) + (112 1T 2e-2x, 

g 1 (x; a) = x + ae -xh 1 (x), 

h 1(x) = In x + y + t dy(e Y -O/y. 
o 

Because of the logarithmic Singularity, Laplace's me
thod is unsuitable for finding the asymptotic behavior 
of the integral, but the major contribution of the inte
grand still comes near the maximum Xo '" 2/(t lnt), as 
it does in the application of Laplace's method. 

Theorem 3.2: I(t, (II) ~ - 1/«(IIt(lnt)2) as t -> 00 for 
(II fixed in 0 < (112 < (II < a o for some (112 and (110. 

Proof: Let z == (1 + t), Jl2 = Inz/z, Jll = 1/(z Inz) 
and ~ == zx so that as t -> 00, Z -> 00, z-I« Jl2« 1 and 
0< Jll « Z-l. The integral is decomposed into I == 
II + 12 + 13 , where 

il22 

II == - (IIZ-IJ;,
1

2 d~e-t/Gl(~z-l;(II), 
J.'l 

12 == - a Ia dxe-u/G 1 (Xj a), 

and 
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Now,h1 (x) = x-leX,gl (Xj QI) = 1 + QlX-l - Qle-Xh 1 and 
G](XjQl) = 2gl ( 1 + QI/x + x-gl ) - 2Q12lT 2e -2x, First, 
we show that the contribution from the tails of the in
tegral is negligible. As x -'> 0+, g I ~ QI lnx < 0 and 
gl ~ QI/x> 0 for x < 1 so that G1 (Xj QI) < 0 for suffi
ciently small x and Gl (Xj QI) "'" G1 (/11; QI) when 0 :c; x:c; 
iJ. 1 for sufficiently large z. This leads to the estimate 

1121 :c; (QI/Gl(iJ.ljQl»tldx~ /11 
o QI(lnf..l.l)2 

1 1 - «--~ 
Qlz(lnz)3 Qlz(lnz)2 

as Z -'> 00 and QI fixed. Since Gl(Xj QI) "'" Ql2 lT 2e-2x, 

1 100 1 1 1131 :c; -- dxe- (z-2)x ~ -- « ---c-
QllT2 1'2 QllT 2z 2 Qlz(lnz)2 

as Z -'> 00 and QI fixed. 

Rewriting the main contribution, 

1 1 
II = - - /12 

Qlz(lnz)2 Qlz(lnz)2 
1 + (1 - e-I'I Z + e-1l2Z), 

Qlz(lnz)2 
1'2 z 

where 12 = 1 d~e-t[ Gl (~/ Zj QI) - Ql2 ln2z J/G l (~/ Zj QI). 
I'IZ 

The error terms on the right are estimated as 

(l-e-I'I Z + e-1'2 z ):c; _1_ + l = 0(1) 
Inz Z 

as Z -'> co. 

Since for (lnz)-1 = iJ.IZ :c; ~ ~ iJ.2Z == Inz, Iln~1 :c; lnlnz, it 
follows that I Gl - Ql2(lnz)21 /G l = 0(1) as Z -'> 00 uni
formly on [iJ.lz, iJ.2z), Hence, 

1l2 Z 

11121 = 0(1) 1 d~e-t = 0(1) as Z -'> 00. 
I'IZ 

Therefore, 

I(t j QI) ~ - 1/(Qlz(lnz)2) ~ - l/(Qlt (lnt)2) as t -'> 00 

and, hence, 
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QlX-2) > 0 for x> O,w(x) -'> - 00 as x-'> 0+ and w(x) -'> + 00 

as x -'> + 00. Hence, by the inverse function theorem, 
there exists a function g2(W) such that x = 
g2«QllT)-le xg l (xjQl» andgz(w) = l/w'(x), 

The branch integral takes the form 

I(t; QI) = - IT- l 100 

dwg3 (w)/ (1 + w 2), 
-00 

where g3(w) = exp(- tg2(w»/(1 + g2(w) + QI/g2(W». For 
sufficiently small QI and not too large t, the integral 
achieves its major contribution near w = O. Let Xo = 
g2(0). Since w'(x) > O,w(QI(L l - L:;:» ~ Y/lT > 0 as 
QI -'> O+,w(QI(L l - L2 - y» ~ - L 2;(lTL l ) < 0 as QI -'> 0+, 
and Xo ~ QI(L I - L 2) ~ - Re[soJ as QI -'> 0+, where 
L 1 = In1! QI and L 1 == Inln1/ QI. 

We choose xl = QlT'l and x 2 = QI(L I - 2L,2) so that the 
interval [W1'W~], with wI = w(xl ) ~ - L 2/lT as QI -'> 0+ 
and w2 = w(x2) ~ L 2/lT as QI -'> 0+ includes almost all 
of the area of the branch integral. We write 

1 «w2 WI) I(tjQl)=-- +foo+l dw.g3(w)/(w2 +1) 
rr W

l 
W

2 
-QQ 

= 11 + 12 + 13, 

In the interval - WI (QI) ~ W :c; w2 (QI), we use the mean 
value theorem to obtaing2(w) = Xo + gZ(W3)W where W3 
is between 0 and wand g3(W) = g3(0) + g3(W4)W (where 
W4 is between 0 and w). We estimate the derivatives 
below, letting X3 = g2(w3) and x4 =:: g2(W4): 

IgZ(w3)wl = Iwl/w'(x3):c; max(lwl)/w'(x2) ~ QlL2 

as QI -'> 0+ 
and 

Ig3(w4)wl = (g2g3 I t + (1 - QI/g~)/(l + g2 

+ QI/g2)I)w-w Iwl:c; exp(-xlt)(t + l/(QI(L l - 4 

- L2)2» max( I wi )/w' (x2) ~ (QlL 2t + L2/ LV 

x exp(- QlLlt) as QI -'> 0+. 

We have used the facts thatw"(x) == (QllT)-le X (2 + x + 
QlI x - QlI X2) < 0 on [xl' x2J {Le.,w '(x) is a decreasing 
function on [xl' x2 ]} and (1 + g 2 + QI/ g 2)-1 ~ 1. 

j (t',QI)~-1/(Qltln2t) ast--7oo, for fixed QI No w, 
in 0 < Ql 2 < QI < QI 0 for some Ql 2 and QI o. Thus, the long 
time behavior, which is important in the transport of 
cosmic rays, is not an exponential decay but a much 
slower, algebraic-logarithmic one. For short times, 
however, one could observe an exponential decay in this 
model. We show this in the following section. 

E. Initial decay of the solution 

We seek to show that the initial decay of j(t j QI) is ex
ponential. Although this is explicitly given in the resi
due terms, the contribution of the branch integral 
I(t j QI) is not obvious. We show the following result: 

Lemma 3.2: For some T > 0, I(t j QI) - exp(- Qlt 
lnll QI) as QI --7 0+ when t < T. The same result is ob
tained by a formal "adiabatic" approximation (see, for 
instance, Ref. 4). 

Prooj: We make the following change of variables 
in the branch integral: 

1 1 
w =w(x) = -eXgl(xj QI) = -(QI-lxex + lnx + y + el(x», 

QllT IT 

where el(x) = foX dy(e Y - l)/y. "rhis tranformation 
has the properties that w'(x) = (QllT)-le x (2 + x + QlX-l-
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f oo jWl 
W dw/(l + w2) ~ -00 dw/(l + w2) ~ 1/W2 ~ IT/L2 = 0(1) 

2 

and 
W2 

IT- l f dwg3(W4)w/(1 + w2) - exp(- QlL l t)(QlL 2t 
WI 

+ L2/ L~) = exp(- QlLlt)· 0(1) 

provided t = 0(1/ (QI L 2 ». 
Hence, as QI --7 0+, 

II = - 1T- l g 3(0) 1: dw/(l + w2) + IT- l g 3 (0) (;: + .t~) 
1 w2 

X dw/(l + w2)- - f dwg3(W4)w!(1 + w2) ~ -g3(0) 
IT WI 

~ - exp(- QI (L l - L 2)t) - exp(- QlLl t) if t = 0(_1_), 
QlL2 

1/21 ~ IT-le-X2tfOO dw/(l + w2):c; (1TW2rle-x2t = 0(11)' 
w2 

WI 

1/31 :c; IT- l l dw/(l + w2) ~ - (lTWl)-l ~ 1/L2 == 0(11) 
-00 

if t = o(aiJ. 
Finally, we have the following result giving the initial 
decay ofj(tjQl) since 2 Re[{3oe sotJ ~ 2 exp(- QlLlt): 
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Theorem 3.3: j(t, a) ~ exp(- aLIt) as a ~ 0+ and 
t = 0(1/aL 2 ). 

F. Solution of equation with constant source 

When the source term in the inhomogeneous equation, 
Eq. (1.1) is constant, Le., a(t) = ao, then 

F=-ao-aK*F, F(O, a) = 1. 

The solution of this equation can be written in terms 
of the solution j(t; a) of the homogeneous equation by 
Eq. (3. 5) as 

F =j - ao!. 

where f(t; a) = J~ dTj(T; a). We seek the properties of 
F(t; a). 

According to a Tauberian theorem,5 

l(+ 00; a) ::::: j(O+; a); 

that is, the limit of the integral of j as t ~ 00 is equal to 
the lilllit of the Laplace transform of j as s ~ 0+ ~ How
ever,j(s; a) ~ - (a Ins)-1 ~ 0 as s ~ 0+, so that j(+ 00; 
a) = 0 and we can write l(t; a) = - J't' dTj(T; a) or 

F(t ; a) = j(t; a) + ao{'o dTj(T; a). 
t 

Now,j(t; a) is integrable as t ~ 00 and, in fact, 

f(t; a) ~ - (at In2t )-1 as t ~ 00, 

since the branch integral has that behavior. Therefore, 
we can interchange asymptotic limit and integral, 

as t ...... 00 and we have the following result: 

Theorem 3.4: F(t; a) ~ - ao/(a Int) as t ...... 00, 

a 2 < a < a 1 and fixed. Therefore, the decay of the 
solution of the inhomogeneous equation has a slower 
pure logarithmic decay, whereas the solution of the 
homogeneous equation has an algebraic-logarithmic 
decay as t ~ 00. 

4. THE UNIFORMLY VALID APPROXIMATION 

A. The approximation 

Since K(t) = In(1 + t), the homogeneous equation has 
the form 

t 
j(t;a)=I-al dTln(l + t-T)j(T;a). o 

The kernel K is monotone-increasing and its derivative 
is monotone-decreasing. The major contribution of the 
kernel to the integral would come from large values of 
t - T. When T is close to t, the kernel is small; and if 
we expect the solution to be bounded, it is not unreason
able to ignore the contribution from values of T close 
to t and retain only the first term. Indeed, it turns out 
that this approximation of the kernel yields a uniform 
approximation to the solution. We prove this fact in 
the sequel. Letting g(l + t; a) by the simplifying approx
imation toj(t; a) and z ::::: 1 + t,g(z; a) satisfies the 
equation 

g(z ; a) ::::: 1 - a Inz f d~g(~; a). 

This equation can be readily solved by viewing it as a 
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(4.1) 

C(z; a) ::::: exp(- az(lnz - 1»~z d~ exp(a~(ln~ - 1». (4.2) 

The error due to this approximation is h(z; a) ::::: j(t; a) 
- g( z; a) and satisfies 

h(z; a) + a fd~ In(l + z - ~)h(~; a) ::::: cp(z; a), (4.3) 
1 

where 

cp(z;a)::::: a Inzfd~g(~;a)-a fd~ In(l + z- ~)g(~;a). 
1 1 

B. Properties of g(z; a) 
(4.4) 

We list and prove some useful properties of the func
tion g(z; a). 

(1) C(z; a) ::::: f{ d~g(z; a) is always nonnegative. This 
is transparent from Eq. (4. 2). 

(2) g ~ 0 as z ...... 00 for fixed a. Proof follows from an 
application of L'Hopital's rule on C(z; a) which gives 
that C(Z; a) ...... l/(a Inz) as z ~ 00. 

(3) g has one and only one zero. Existence follows 
since C(l; a) ::::: 0 and C(z; a) ...... 0 as z -7 00, there must 
be an intermediate point z 0 such that 1 < z 0 < 00 and 
C'(zo; a) == 0 where the prime denotes differentiation 
with respect to z. However, C'(z; a) ::::: g(z; a) so that 
g(zo; a) = O. To establish uniqueness, note that g' = 
- (a Inz)g - aC/z. Since C(z; a) > 0 for z > 1, at any 
zero, say zo,g'(zo; a) = - aC(zo; a)/zo < O. However, 
the Sign of the derivative at adjacent zeros must be 
opposite or zero so that there can only be one zero of 
g(z; a) which we will call ZOo 

Hence,g is unity at z = 1, decreases to zero at z = zO' 
and remains negative as it asymptotically approaches 
zero as z ~ 00. 

C. Estimate of the zero of g 

Letting g(zo; a) = 0, we begin with a coarse estimate 
of Zo and proceed to refine it. 

(1) Coarse estimate: Zo 2: (a In1/a)-1 for a < e-1 • 

Let U(z) = exp(az(lnz - 1» so that 

g(z; a) = 1 - a Inz(U(z»)-1.t d~U(~), 
1 

and when 
Zo 

z = zo, 1 = a 1nzo(U(zo»-11 d~U(~). 
1 

(4.5) 

(4.6) 

For 1 oS z oS zo, z(lnz - 1) oS zo(lnz o - 1); hence, U(z) oS 

U(zo) and 
Zo 

1 oS a Inzo ~ d~::::: a 1nzo(zo - 1) oS az o Inz o' (4.7) 

To show that z 0 2: 1/ (a Inl/ a) for sufficiently small a, 
suppose the contrary that 1 < Zo < l/a In1/a). Let Ll == 
In1/a and L2 = In Ll = Inln1/a, 0 < azo lnzo < (1-
L2/ L 1 ) < 1 for 0 < a < e- 1 • This is a contradiction of 
Eq. (3.7) and hence Zo 2: 1/ (a In1/ a). 

(2) Second estimate: Zo > L 2/(aL 1 ) for a < a 1 • Since 
1nz oS Inzo for 1 < z oS ziJ, Eq. (4. 6) becomes 

loS--- dz exp(az(lnz o-1» oS 0 1--- , a Inz o1
zo Inz ( 1) 

U(zo) 0 Inzo - 1 U(zo) 
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and with further slmplifications,lnzo :::s U(zo) :::s 
exp(az o Inz o)' Upon taking logarithms, 

where a < a 1 == l/exp (exp(e» < 3 x 10-7 so that 

(4.8) 

ee < L < a-I and e < L < L 1 • If we suppose that 
1/(aL11:::s Zo :::s L./(aLJ, then Zo ~ 1/(a 1 In(1/a 1» > 
ee. Since Zo lnzo/lnlnzo is an increasing function of Zo 
for Zo > ee, 

azo Inzo/lnlnzo:::S (1- E1)/(1 + In(l- EI)/L2), 

where E 1 == (L2 - L 3)/ L 1 , L3 == InL2 == lnlnlnl/ a and 
1 < L3 < L 2• But 

(1 + In(l- E 1)/L2)/(I- E l ) ~ 1 

+ EI[l - 1/(L2(1 - E1))] ~ 1 

since In(l- E1) ~ - E/(I- E1 ) and 0 < E1 < (e -1}/e" 
< 0.15 < 1. Hence, azo Inzo/lnlnz Q ~ 0, which con
tradicts Eq. (4.8) so that Zo > L 2I\aL1 ). 

(3) Third estimate: Zo < a-I for a < a 1 • Integrating 
Eq. (4.5) by parts when e < ~ < z, one obtains 

g(z;a) == 1--- 1 d~U(~) + -- +-a Inz ( e U(z) 1 
U(z) 1 a Inz a 

+1../ d~U(~») = Inz (1-t d~ U(~) - a t d~U(~)\. 
a e ~ In2~ U(z) \ e ~ In2~ 1 '} 

Since aWn~ - 1) = a~(lnz - 1} + a(ln~ - Inz) ~ 
a~(lnz - 1) - az/e for e < ~ < z and (~ In2~)-1 ~ 
(z In2z)-I, 

Inz ( exp(- az/e)U(z) 
g(z) :::s - 1 - -----

U(z) az In3z 

and 
x [1 - exp(- a(z - e)(lnz - 1))]) (4.9) 

g(1/a) :::s _. 1 / [1 - aeL! exp«I/e) - ae)] < 0 
L~ exp(l e) 

for a < a 1 • Therefore,zo < l/a, since there can only be 
one change in sign of g with g(1} = 1. 

(4) Fourth estimate: Zo < 4L2/(aL 1 ) for a < a 1 • Using 
Eq. (4. 9) with z = zo' we have 

exp(-azo/e) [U() exe(lnzo -l)] 
1 ~ Zo - e 

a(lnzo - l)zo In2zo 

or by taking logarithms 

3 In1nzo ~ azo lnzo - azo(1 + l/e) -lnazo 
+ In(l- e-ex(zo-e)(ln-to -1». (4.10) 

Upon assuming the contrary hypothesis that 4L2/(aL 1) :::s 
zo:::S a-I for a < a 1 == l/exp(exp(e» and letting E2 = 
(L 2 - L3 - In4)/ L I , 0 < 102 < 0.025, we have an estimate 
for the first term on the right of Eq. (4.10) 

azo Inz o/(3 Inlnz o) ~}(1 102)/(1 + i2 In(1 - E2») 
4 

~ 3(1- 102) ~ 1.3, 
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for the second term 

- az o(1 + l/e)/(3 In1nzo) ~ -} (1 + 1/e)/[Ll (1 

with 
+ 12 In(1 - €2»)J ~ 0.034 

10 3 == exp(- a(zo - e)(lnzo - 1» < exp(- 4L2(1 - 10 2» 
and for the third term 

+ eaT. 1 < 4.6 x 10-5 , 

Adding the above inequalities, we have 

az o lnzo/lnlnzo ~ 1. 2> 1, 

which contradicts Eq. (4.10). Hence, z 0 < 4L2/1,l; and 
summarizing the third and fourth estimates, we have 

L 2/(aL1 ) < Zo < 4L2/(aL1 ) for a < a1' 

or that the zero of the approximation g( z; a) has the 
order 

Zo == 0(L2/(aL 1» as a ~ 0+. 

D. Bound on i/>(z; a' 

In this subsection, we seek a bound of the function appear
ing in Eq. (4. 4) which we write 

cf>(z; a) ;=: - a 1" d~(~) In(1- (~- 1)/z). 
1 

This is the source term in Eq. (4. 3) for the error 
h ( z; a) in the approximation g( Z; a). We bound cf> in 
order to bound h. We show 

Lemma 4. I: <1>(z; a) == 0(1) as a ~ 0+ uniformly in 
z. For l:::s Z:::S zo,g(z;a) ~ 0 and sinceg(l) == 1 and 

gl(Z; a) = - _a_ t d~U(~) - a Inzg(z; a) :::s 0, 
zU(z) 1 

We have thatg(z;a):::s 1 on [1,zo]' Also,when l:::s ~:::s z, 

O:::s (~- l)/z < (z - l)/z < 1 

and 

1cf>(z;a)1 :::sal
Z

dtl ln(1-(t- 1)/z}l:::s 
1 

1 
- az J dt lnt :::s az :::s az 0 

z-I 

for z :::s zOo However, azo :::s 4L2/ L1 == 0(1) as a ~ 0+, so 
that cf>(z; a) == 0(1) as a ~ 0+ when z :::s zo0 

When z ~ zO' we write cf>(z; a) == cf>1 (z; a) + cf>2(Z; a) 
where 

Zo 
cf>1 (z; a) == - a ~ d~(~; a) In(1 - (~- 1)/z) 

and 

cf>2(z; a) == - a t d~«(; a) In(1 - (~ - 1)/ z). 
Zo 

The first integral cf> 1 has the properties 
Zo 

cf>'1 (z; a) == - a ~ d~g(~; a)(~ - l)/(z(z + 1 ~ m < 0 

and O:::s cf>1 (z; a) :::s <1>l(zO; a) :::s azo == 0(1) as a ~ 0+, as 
before. 

For the estimate of cf>2(z; a), we need the decay of 
g(z; a) as z -> 00. Still assuming that z ~ Zo and inte
grating Eq. (4. 5) by parts on [zo' z] only, we have 
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a Inz ( 20 U(z) U(z) 
g(z; a) = 1--- 1 d~U(~) + -- ---

U(z) 1 a Inz a Inzo 

+ r d~U(~») 
20 a~ In2~ 

The fact that z 0 is a zero leads to a cancellation, 

. _ a Inz J2 dW(~) 
g(z,a) - - -- . 

U(z) 20 a~ In2~ 

A second integration by parts yields 

- 1 a Inz J2 (3 + In~)U(~) 
g(z;a) = --- d~ -----

az In2z U(z) 20 a2~2 In4~ 

InzU(zo) (4.11) 
az o In

3zoU(z)' 
and the estimate 

Ig(z; a)1 -< _1_ + a Inz (3 + Inz o) r d~ U(~) 
- azln2z U(z) az o In2zo 20 a~ In2~ 

1 (3 + Inzo) 
:5' + Ig(z;a)l. 

az In2z az o In2zo 

Now when a < al> L 2/(aL l ) < Zo < 4L2/(aL l ), so that 

(3 + Inzo)/(az o In2z o) < (1 

+ 3/(L l (1 - El»/(L 2 (1 - E l )} < 0.58 

and Ig(z; a) < 2.4/(az In2z). The estimate on the second 
integral is 

1<I>2(z;a)1 :5'2.4F d~lln(1-(~-1)lz)I(~ln2~) 
to 

2.4 Jl I I :5' -- / d~ Iln(l - ~ + 1 z) I ~ 
In2zo 20 2 

:5' ~ t d~lln(l- ~)I/~ 
In2zo 0 

or 
1T2 

1<I>2(z;a)1 :5'2.4lf/ln2z o. 

However, for a < al> 1/1n2zo < 1/(Lt(1- El)2) = 0(1) 
as a -'> 0+. Therefore, <I>(z; a) = 0(1) as a -'> 0+ uni
formly in z. 

E. Uniform validity of g(z; cd 
In order to show that g(l + t; a) is a uniformly valid 
approximation to g(t ; a) as a -'> 0+, we must show that 
the absolute error h (z; a) is uniformly small as a -? 0+. 

Lemma 4.2: <I>(z; a) = 0(1) uniformly for z 2: 1 as 
a -'> 0+ implies that h(z; a) = 0(1) uniformly for z 2: 1 as 
a-?O+. 

Since the kernel K in Eq. (4.3) for h is the same as 
Eq. (2.3) for I, the solution h may be written in terms 
of t and the source term <I> so that 3 

h = <I> + <I>*j. (4.12) 

From the result of Sec. 3C we have that I is continuous; 
and from the previous section we have that <I> = 0(1) as 
a -? 0+ unifornily in z so that it is certainly bounded. 

Therefore, 

Ihl :5' 1<1>1 + 1<I>1*ljl :5' sup[I<I>I][l + 100 

dTli(T;a)l] 
2 0 

:5' 12.5 sup[1 <I>(z; a)l] = 0(1) as a -? 0+. 
2 
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Hence,h = 0(1) uniformly in z = 1 + t as a -? 0+. But 
I h I is the absolute error between the solution I (t ; a) 
and the approximation g(l + t; a) so that g is a uniform
ly valid approximation to I (t ; a) for t ;;;, 0 as a -? 0+. 

In addition, we can show that h = 1- g -'> 0 as t -? 00 

faster than either I or g for any fixed a > O. Returning 
to the tWice-integrated-by-parts form for g, Eq. (4. 11), 
we note that U( z) is exponentially large compared to z 
and Inz and z -'> + 00. For this reason, the first term 
on the right of Eq. (4.11),- I/(az In2z), is of larger 
order than the last since 

In2U(zo) I 1 
-- -? 0 as z -? + 00. 

az o In
3z oU(z) az In2 

The middle term on the right of Eq. (4. 11) is also of 
smaller order than the first since by L'Hopital's rule 

( ) 
a Inz J2 (3 + In~)U(~) 3 + Inz 

az In2z -- d~ -'> -'> 0 
U(z) 20 a2~2 In4~ (z In2z -lnz - 3) 

as z -? 00. Hence, 
1 

g(z; a) = - (1 + 0(1» as z -'> + 00, 
az In2z 

while I(z; a) has a similar behavior as z -? + 00 so that 

0(1) 
h=---

az In 2z 
as z -'> + 00, 

Le., decaying faster than either I or g as z -'> + 00. Thus, 
the relative error hi I tends to zero for every fixed 
a > 0 and sufficiently small. 

5. CONCLUSIONS 
A uniformly valid solution has been found for a Volterra 
integral equation with a logarithmic kernel multiplied 
by a small parameter. We have proved that the absolute 
error tends to zero uniformly in the infinite interval 
as the small parameter tends to zero. Furthermore, for 
every fixed a > 0 and sufficiently small, the relative 
error tends to zero for long times. The work was done 
in three steps. First, we found a suitable approximation 
to the kernel that would yield a uniformly valid solution. 
Second, we proved boundedness of the solution by using 
transform methods. Third, we gave a direct proof of the 
smallness of the error. We obtained a single expression 
valid not only for finite times but also exhibiting a slow 
algebraic-logarithmic decay for long times, which we 
proved to be the correct asymptotic approximation. 

In this paper, we considered an equation that arises 
speCifically in study of the diffusion of charged par
ticles in a strong magnetic field. 1 It may not be amiss 
to remark that equations of the same type occur also 
in engineering, biology, and nuclear physics. 

APPENDIX A. EXISTENCE OF ONLY TWO ROOTS 
OF D(s; a) 

The following result describes the singularities of 
I(s; a) through the two zeros of D(s; a) in the left-hand 
plane and a branch point at s = O. 

Lemma AI: D(s; a) = s + aesEl(s) has only two 
zeros in S = {s = re if,: 0 < r < a, - 1T < () < 1T} for a 
sufficiently small. 

Proal: The exponential integra16 can be written 

El(s) = -Ins -)' + ells), 
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where y is the Euler's constant and e 1 (s) = los dy (1 -
e-Y)/y = - L;:=o(- s)n/(nln) is analytic. The only sin
gularity of D(s; 0') is the branch point of the logarithm 
at s = O. D is analytic in s and we place the branch 
cut on the negative real axis. 

The argument principle7 is used to find the number of 
zeros of D. Consider the positive-oriented circular 
contour with a slit along the negative real axis r = 
U?= 1 r i , where 

r 1 = {s = Re ie: 0 ~ e ~ (7T-arctan(E!v'Re 2 -. E2)}, 

r 2 = {s = x + iE: - v'R2 - E2 ~ x ~ OJ, 
r3 = {s = Ee ie : -7T/2 ~ e ~ + 7T/2}, 

r 4 = {s = x - iE: - v'R2 - E2 ~ x ~ OJ, 
r5 = {s = Re ie : (-7T + arctan(E!v'R2 - E2) ~ e ~ O}, 

(See Fig. 1.) 

D is analytic in the interior of r so that the number of 
zeros of D is given by the change in the argument of D 
on r divided by 27T. 

The zeros of D occur in conjugate pairs since D*(s; 0') = 
D(s*; 0') and the change in argument will be the same 
on both portions of r in the upper and lower half planes, 
respectively. 

Along r 1 with R sufficiently large, the asymptotic ex
pansion of E 1 (S)5 yields 

e S E 1 (s) - S-1 f n!(- s)n as lsi ~ exll arg(s)l< 3;, 
n=O 

so that for sufficiently large I s I the change of the argu
ment is 

Al arg[D] = Al arg[s] + Al arg[l 

+ O's-le,sE1 (s)] - Al arg[s] ~ 7T. 

We need not be concerned with the error since the result 
will be an integral multiple of 7T. 

On r 2 with E« 1 and R» 1, let D = pe iq, and take 
x"'" re ilr ignoring E so that D "'" U + iV, where U = - r + 
O'e-r (- lnr - y - Jor dy (e Y - 1)/y and V = - O'7Te-r • V is 
real and negative and U has only one zero, as can be 
seen from the asymptotic behavior 

U - - r as r ~ exl, (i.e., tanq, ~ 0+), 

U - 0' lnl as r ~ 0+ (i.e., tanq, ~ 0-) 
r 

y 

® 

--------------~~~--------~x r3 .-------------/-'\ 

R 
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and 

~~ = - 1 + O'u(r) - O'/r - O'e-r E 1 (r), 

where u(r) = e-r J5 dy (e Y - l)/y. u(r) is positive and 
vanishes when r --> 0+ or when r --> exl and otherwise can 
be no larger than 2. Hence, aU/or < 0 for 0' < 1/2 so 
that U(r) is a decreaSing function and can have only one 
zero. The change in argument on r 2 is 

A2 arg[D] '" 7T. 

On r ~ with E sufficiently small, Re[ D] - 0' In1/ E and 
Im[DJ - O'e + E sine and hence tan(arg[D] - (- O'e + 
E sine)/ (0' In1/ E) ~ 0 as E ~ 0+. Thus on r 3' A3 arg[D] 
can be made arbitrarily small compared to 7T. 

Since r, the sum of the partial contours, is a closed 
Jordan curve and A arg[D] '" 2(7T + 7T) = 47T, D(s; 0') has 
exactly two roots in S by the argument principle. 

For later development, we will need the asymptotic 
behavior of the zeros, So and s6 of D(s; 0'). Since' we 
know these exist in conjugate pairs, we investigate only 
the upper half plane. 

Let s = re ie, r > 0 so that 

E 1 (re ie ) = fOO (. )dye-Y/y 
r exp ,e 

(AI) 

or 

(A2) 

Now,D(re io +; 0') = r + O'er Jor dye-Y/y > 0 and 
Im[D(re ilr -; 0')] = - 0'7T exp(- r) < 0 so that 0 < e < 7T. 

To find a lower bound on I So I we observe that 
D (re ifJ; 0') --> - 0' lnr as r --> e. By the triangular inequal
ity, 

I D (re ie; 0') I ~ I I 0' Inr I - I D (re ie; 0') + 0' Inr I I . (A3) 

Since I e r exp( ie) I ~ e r , I (e r exp( ie)e 1 (r exp(ie» I ~ rer 
and le r exp(ie) - 11 ~ rer, 

ID(re i6 ;0') + 0' Inri ~ r + O'e r (7T + y + r(1 + Inri». 

Now, suppose 0 < r ~ 1/2 0' Inl/O' and let 0 < 0' < 0'1> 
where 0'1 = exp(- exp(e», then ID(re ie ; 0') + 0' lnrl < 
0.550' In1/0' and 10' In1/rl > 0.850'1n1/0' so that 
ID(re ie; 0') I > 0 by (A3). Therefore, I So I = ro cannot 
be contained in this interval and a lower bound must be 
I sol> 1/20' In1/0'. 

We find an upper bound for I So I by noting that 
D(re ie ; 0') - r as r ~ exl and 

I D (re ie; 0') I ~ I r - I D (re ie; 0') - r I I . 

To estimate this, we relate E 1 (re ie) to E 1 (r) by 
e 

El (re ie) = El (r) - i 10 de' exp(- re ie '), 

(A4) 

by using an alternate contour. Hence, 0'1 exp(re i e) 
E 1 (re i6) I ~ 0'/ r + 0'7T. Suppose that 2,z ~ r < exl when 
0< 0' < 0'1' then (O'/r + 0'7T) < O. 6,z < r and by 
Eq. (A4), ID(re i6 ; 0')1> 0, again, since on the contrary 
D(so; 0') = 0, I Sol < 2,z • 

This upper bound can be refined by using the logarith
mic form for the exponential integral, Eq. (A2), and we 
find that 

0.50' In1/0' < I So I < 1. 50' In1/0'. 

With these bounds, we can use a Newton-Raphson-type 
method to iterate for approximations to so' Since D is 
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continuous for r > 0 and I e I < 7T, the mean value theo
rem implies 

(A5) 

where s+ = s + o(so - s) and 0 < 0 < 1. The derivative 

D s (s; ad = 1 - 01/ S + Ole s E 1 (s) 

is bounded uniformly away from zero by 

IDs(S;OI)1 ~ 11-1~- OIe sE 1 (s)11 

with 101/ s - Ole sE 1 (s) I ~ 0.14 for 0.501 In(l/OI) < r < 
1. 501 In(l/ 01) and a < 011' Therefore, Ds (s; Q) ~ O. 86 
and we write Eq. (A5) as 

(A6) 

As a one-term approximation, we try s = e i-rr-OI lnl/ a in 
Eq. (A6) so that I So + aLl I < 1. 7 OIL2, where L1 = 
In1/0I, L2 = Inln1/0I and So ~ - aLl as 01-7 0+. To ob
tain bounds on Im[soJ we try a three-term approxima
tion, s = - aLl + OIL2 + OI(y + i7T) in Eq. (A6). We find 
I So - s I ~ 4. 501L 2/ L1 so that 

So ~ - aLl + OIL2 + OI(y + i7T) as 01--> 0+, (A7) 

and Re[so] ~ - aLl + OIL2 + OIy and Im[so] ~ 0I7T. The 
conjugate zero behaves as s6 ~ - aLl + OIL 2 + OI(y -
i7T) as a --> 0+. 

APPENDIX B. PROOF THAT THE INVERSE IS A 
SOLUTION 

Even though we know the solution has a Laplace trans
form we must justify that the inverse is an exact solu
tion by substitution. 

Theorem Bl: The inverse, Eq. (3.4), is a solution of 
Eq. (2.1) for sufficiently small a and Re[so] > 0 and 
t ~ T < 00, 

Proof: Before substitution into Eq. (2.1), the inte
grand is manipulated into parts which have uniformly 
convergent integrals. Since D(s; 01) ~ S-l as I s I -700 
and is continuous otherwise if Re[s] > 0, the integral 
converges conditionally, but not absolutely. We sub
tract the leading term for large I s I and obtain 

(B1) 

where we used the fact that j~:ii:: dsets/s = 27Ti. For 
large lsi, le tse sE 1 (s)/(s(s + Ole sE 1 (s)) I ~ e at/lsl3 so 
that the integral in Eq. (Bl) converges uniformly for 
o ~ t ~ T for some T > 0 and that flO; 01) == 1 by 
Cauchy's theorem. Consequently, differentiation and 
in tegration may be performed under the integral sign 

and 

1t 012 jCt+ioo 
a dTK(t - T)fiT; 01) = a In(l + T)-2' . o 7Tl ",-,00 

d sE ( ) (t+l>S (E 1(S) - E 1(s(1 + m) xse lse • 
sD(s; 01) 

The contour integral on the right of the last equation can 
be simplified since 
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as I s I --> 00 so that its integral vanishes upon application 
of Cauchy's theorem. Also,27Ti In(1 + t) = jdse (t+1>SE1 
(s)/ s so that we have 

APPENDIX C: EQUIVALENT CONTOUR FOR THE 
INVERSE 

QED 

Although the inverse transform has been shown to be a 
solution in Appendix B, its form is not suitable for 
evaluation. A simpler, equivalent contour is sought 
which utilizes the poles and branch out of [D(s; 01)]-1. 

We write the inverse Eq, (3.4) as a Cauchy prinCipal 
value 

1 ja+iR 
f(t·a)==-. lim . dse st /D(s·OI). , 27Tl R .... OO a-.R ' 

The integrand est/D(s; 01) is continuous except for a 
logarithmic branch at s = 0 and two poles at the two 
zeros of D(s; 01). The branch line is placed along the 
negative real axis. We define the following positively 
oriented arcs: 

r 0 = {s = a - iy: - R ~ y ~ R}, 

r 1 = {s == Re ie: (7T - arctan(6!v'R2 - 62)) ~ e 
~ arctan( .J'=R"""2-_-a-"-2 / a)}, 

r 2 = {s = x + i6: - .JR2 - 02 ~ X ~ .Je2 - 62}, 

r3 = {s == ee ie : (- 7T + arctan(6/v'e 2 - 6 2 »).~ e 
~ (7T - arctan(6/@=--62)}, 

r 4 = {s = x + io: - ,JR2 - 62 ~ X ~ - ,Je2 - 62}, 

r 5 = {s = Re is: (- 7T + arctan(O/ ,JR2 - 62» ~ e 
~ - arctan(,Jr=R"""2-_-a-;;2/ a)}, 

where 0 < 6 < e < (a/e) < Im[so), e < a and R > 1. 
(See Fig. 2.) 

According to Cauchy's residue theorem, 

-2
1

.1 dsest/D(s; 01) =6 Res[est/D] 
7Tl ro 

5 1 
- 6 -·1 dsest/D(s; 01). 

m= 1 27Tl r;" 

Using L'Hopital's rule, the residues at the two isolated 
poles, So and s6, are 

Res[e s tiD] I 5= So = f3 0e So t 

y 

FIG. 2 
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and 

Res[est/D] 1 =f3*e sot 
s= st 0 , 

where f3 0 = l/D s (so; a) = 1/(1- a/so - so), The con
tribution of the contours r 1 and r 5 vanish as R ~ a 
since I D(s; a) I ~ R as R ~ a. Also, the contribution of 
the contour r3 is vanishing since ID(s; a)1 ~ a In11 € 

as E ~ 0+. 

On the contour adjacent to the branch cut, r 2 and r 3' 

Im[s - so] > 0.7 a1T for a < aI' 

where estimates of So and the values of a 1 are given in 
Appendix A so that D is continuous and nonvanishing on 
r 2 and r 3' Hence the limit Ii ~ 0 + and the integral may 
be interchanged: 

R 
lim 1 dsest!D(Ii' a) = - J dxe-xt/[x + ae-X(lnx 
0 .... 0+ 1'2 ' € 

where 
+ i1T + Y + ez(x»] 

and the corresponding result for r 3 is minus the com
plex conjugate. 

Finally, taking the limit as R ~ 00 and E ~ 0 + , the solu
tion takes the form 

(C1) 
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where 

l(t; a) = - a Joo dxe-x tk 1 (x; a), (C2) 
o 

K 1 (x;a) = e-x /C 1 (X; a), (C3) 

and 

C 1 (x;a) = (x + ae-x(lnx + y + e2(x»2 + a 21T 2e-2x . 

In Eq. (C1) the first term on the right is the contribution 
of the residues at So and s6 and the second is the con
tribution of the branch cut. 
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Deep inelastic scaHering in a renormalized perturbative 
model 

A. L. Mason 

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England 
(Received 16 November 1971) 

We sum all the leading contributions to the form factor v W 2 in deep inelastic electron-proton 
scattering in a field theory with a neutral pseudoscalar gluon. This involves calculating ladder graphs 
with renormalization insertions. We find that we can express vW2 in a simple way in terms of the 
asymptotic behavior of the renormalization parts. For ladders with only gluon rungs we obtain a 
result similar to Chang and Fishbane's for the Mellin transform of v W 2' namely 
z(lnv)(exp{(g2/167T2)[y (lnv)l(A+ 1)(A+2)]}-I). Y and z are (calculable) functions depending on 
the renormalization parts. We also calculate the rather more complicated contribution from ladders 
with fermion rungs. Our results do not lend any support to the notion of anomalous dimensions. 

1. INTRODUCTION 

We investigate the deep inelastic electron-proton 
total cross section in a theory with a neutral pseudo
scalar (or scalar) gluon. Chang and Fishbane1 made 
the first extended investigation of this model, calculat
ing the contribution of "rainbow" graphs by their infinite 
momentum technique. Gaisser and Polkinghorne 2 showed 
how to apply Feynman parametrization and Mellin trans
form techniques to calculate the asymptotic contribution 
of convergent graphs. Despite their conclusion that a 
cutoff model is a better description of the physical world 
-leading to Regge pole behavior and scale invariance in 
the Bjorken limit-it seems worthwhile to extend the in
vestigation of the model without a cutoff to take account 
of divergent diagrams. We had some hope of discovering 
scaling with anomalous dimensions, as proposed by 
Wilson,3 but this has not manifested itself. 

We calculate the form factor vW2 to leading order in 
lnv and the strong coupling constant g, calculating the 
contribution of every graph that is important in leading 
order. We find that such graphs are the dressed ladder 
graphs, that is, ladder graphs with renormalization parts 
inserted arbitrarily in them. We can sum these graphs 
in a fairly simple form in terms of the asymptotic be
havior of renormalization parts. We find that the natural 
quantity to calculate is the Mellin transform of the form 
factor. For ladders with only gluon rungs we find 

y(x)dx \ Il 
(A + I)(A + 2)) J 

(1.1) 

The functions z and y depend upon the renormalization 
parts. If we set 

y = 1, z(x) = exp[ (g2 /321T 2)X], (1.2) 

we reproduce the result Chang and Fishbane obtained by 
summing "rainbow graphs." Counting all leading renor
malization parts, we arrive at 

y(x) == [l-fs (g2/1T 2)x]-1, z(x) == [1-fs(g2/1T2)x]1/lO, 

(1. 3) 

reminiscent of results obtained by several authors4 - 6 

for the asymptotic behavior of renormalization parts. 

These expressions for y and z are quite unsatisfactory, 
of course. Not only do they suffer from ghost cuts at 
large x, but also they do not give scaling. We can only 
hope that while our leading order calculation gives the 
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wrong values for y and z yet the general form of (1.1) 
is correct. We discuss this further in Sec. 8. 

In Sec. 2 we give a Simple prescription for obtaining 
the contribution to vW 2 of dressed graphs with only 
gluon rungs. This relies upon replacing renormalization 
parts by their asymptotic values. In Sec. 3 we give a 
similar prescription for calculating the asymptotic be
havior of the renormalization parts. This is similar in 
principle to the method used by Appelquist and Primack6 

for a charge symmetric model. 

In Sec. 4 we calculate some simple examples by more 
rigorous methods and demonstrate that the results agree 
with those previously obtained. We also show that a dia
gram with fermion rungs can make an asymptotically 
important contribution. Sections 5 and 6 are devoted to 
justifying the prescription of Secs. 2 and 3, respectively. 

In Sec. 7 we show how to calculate the leading contri
bution from the more general class of diagrams with 
fermion rungs. With renormalization parts as calculated 
in Sec. 3 the amplitude takes a fairly simple form. 

In Sec. 8 we discuss briefly the validity of our results 
in other than leading order. We also show how formula 
(1.1) compares with experiment when we assume that 
the functions y and z behave in such a way as to allow 
scaling. 

2. SUM OF DRESSED LADDER GRAPHS 

In this section we present a prescription for calculat
ing the leading behavior of the form factor vW2 • This 
prescription corresponds to the most naive way of doing 
the calculation, but turns out to give the same answer as 
the more rigorous method that will be described in 
Sec. 5. 

We obtain the form factor from the imaginary part of 
the forward elastic y - p scattering amplitude. This is 
described in general by the diagrams of Fig. 1, but the 
diagrams we consider first are the dressed ladder dia
grams of Fig. 2. We regard the blobs at the vertices of 
Fig. 2 as sums over all OPI (one particle irreducible) 
vertex parts, and the blobs on the propagators as sums 
over all (not necessarily OPI) self- energy diagrams. 
Then we need only sum over all possible number, n, of 
rungs, and we have counted all the diagrams of this 
class. 

Suppose that the renormalized propagators have the 
following asymptotic forms (we neglect terms propor
tional to the rest masses): 

Copyright © 1973 by the American Institute of PhYSics 
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q q 

FIG. 1. Diagrams for forward elastic 
scattering. 

p p 

0<.0 

----0-----
FIG. 2. Dressed ladder 
graph with gluon rungs only. 

C ___ -A 
--~-- r 

~F(Q)~ _i_ ~ 
(21T)4 Q 2 _ m2 

00 

~ Sn(ln(- Q2»n 
n=O 

i 

(21T )4 
S(x) (2.1) 

i 1 T(x), (2.2) 
(21T)4 Q2 _ m 2 

where 

x = In(- Q2). (2.3) 

Further suppose that the photon vertex has the form 

(2.4) 

and the gluon vertex 

00 (21T)4 
~ vn (lnt)n = -.- gys V(y), 
o t 

(2.5) 

where 

y = Int (2.6) 

and t is the invariant we chose to take asymptotic. 

To calculate the behavior of a ladder graph, we re
place each renormalization part by its asymptotic form. 
This is not a well-defined procedure for vertex parts 
since we may choose to take any of several variables 
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as the asymptotic one. However, a prescription that 
will in Sec. 5 be shown to give the right answer is to 
take as asymptotic variable minus the squared momen
tum on the rung running into the vertex. This means 
that we can absorb the vertex renormalizing factors 
into the rung propagators, so that a dressed ladder 
graph looks just like a bare ladder graph with modified 
propagators. For the top (fermion rung) the effective 
propagator becomes 

_i_ U2fX)S(x) _---'='~'-
(21T)4 \. Q2 _ m2 

---'-~~-z(x). 
(21T)4 Q2 _ m2 

(2.7) 

If we refer to the answer, (2.38), for the Mellin trans
form of lIW2, we see that we could equally well take _q2 
as the asymptotic variable for the electromagnetic ver
tices, since the function z (lnll) just factors out and Inll 
is asymptotically equal to In(- q2). As Appelquist and 
Primack6 showed, the asymptotic form of the vertex is 
independent of which variable is taken asymptotic. 

For the gluon rungs the effective propagator is 

. 1 i 1 _z _ V2 (x) T(x) _ -- t(x) , 
(21T)4 Q2 _ m2 (21T)4 Q2 _ m2 

(2.8) 

and for the (fermion) uprights it remains 

_z_' ~ S(x). (2.9) 
(21T)4 Q2 _ m 2 

For a single term in any of these power series in 
In(- Q2) we can use the following parametrization 

_In_n....:...(----=..Q2--'.) ~ (_ 1)rt+1 I dp lnnp exp[p(Q2 _ m2)]. 
Q2 _ m2 (2. 10) 

So for the complete propagator we have, say, 

2t (X) 2 ~ I dp 23 tn (- l)n+11nnp exp[p(Q2 - m2)], 
Q - m 0 (2.11) 

and we may write this formally as 

t(x) ~-Idpt(-lnp)exp[p(Q2-m2)]. (2.12) 
Q2_ m2 

With this parametrization we can write the dressed 
ladder contribution to y-p scattering amplitude Tl.'v in 
a form very closely resembling GP's expression for 
the contribution from the bare ladder. In fact, for the 
dressed n-rung ladder we write 

n ( f"" 00 00 T(n) = n - t(-lnO!.)dO!. f S(-In{3.)d{3. f 
ltV ; =1 0 " 0 " 0 

I d4r'J J"" ( x S(- In(3'.)d(3'. ig2 __ , z(- InO! )N n) 
" (21T) 4 0 0 ltv 

x X;-l(r;,p,q)dO!o (2.13) 

while for the bare ladder we have GP's formula 

(, f"" dO!; f"" d{3j foo d{3'; • ig2 I d
4r

j
) 

o 0 0 (21T)4 

X 1000 
dO!o N~~ X;-l(r p p,q). (2.14) 

N~nj the product of numerator factors, and X;-l(r; ,p, q) 
the product of denominator factors from the propagators, 
are the same in both cases. 
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We now follow exactly the procedure of G P in choosing 
the dominant numerator factors proportional to q, 

(2.15) 

and performing the symmetric integration. Defining the 
structure functions by 

_ 1m _ 1 ( P • q \ (. P • q ) 
WJlV - --;- TJlv - m 2 PIl - q2 qllj Pv - ---q2 q" 

x W2(q2,v) - (gllv- q~!v) W1 (q2,v), (2.16) 

where 

v = (P • q)lm, 

we obtain 

w£n) = 2m ( g2 \ n 1m n (1"'-' t(-lnO'j)dO'j fO 
W 16rr2j rr j=1 0 0 

X S(- In(JJt(J;!OO S(- 1n(J~)d(J~) Joo z [In(- O'o)]dO'o 
o 0 

1 D x - exp - (2.17) 
C3 C 

for the leading contribution to W2 from the n-rung 
dressed ladder. D and C are the standard parametric 
functions 7 for the corresponding bare ladder. The cor
responding contribution from the bare ladder, calculated 
by GP, which we shall call B n , is obtained by setting the 
functions t, S, and z equal to unity in (2.17). 

We continue to use the methods of GP in investigating 
the asymptotic behavior of w~n). We have 

DIC = 2m(gIC) v + dlC, 

where 

g = O'O( IT O'j -.! [C- O'oC']\ 
;=1 W 'j 

with 

W =- 2mvlq2. 

We scale according to 

n 
0'0 =. n ai' 

;=0 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

where the set {O'i' (Ji' (J~} is represented by OJ. Then we 
see that C scales as 

n 

C= n (ak)kC 
k=1 

so thatglC scales as 

~=n ak.i 
C k=1 C 

(2.22) 

(2.23) 

The scaling changes terms like InP O'j to InP (iij nJ a k)' 
As we shall see, every power of a logarithm of a scaling 
factor leads to an extra logarithmic enhancement of the 
structure function. So the most important part of 
InPWi nj a k ) is InP(nja k ). We obtain 

w~n)...., 2m ( g2 )n 1m J n da k • Z (_ In Ii aJ~ 
W 16rr2 1T k=O j=O 'l 
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(2.24) 
where 

Y = S2t. (2.25) 

Since y and z represent power series, Eq. (2.24) has 
expressed w~n) in a form to which we can apply the 
work of Appendix A. We see at once that we can write 

where, in fact, 

Formally we can rewrite (2.26) as 

vw~n) ...., z (lnv) ri (1%1+1 dx iY (x j) . ~ 
W i=1 0 161T2 

J - - - r;:; - 7.fl ») 1m ~ - 1)-1 x dO'jdf3 j d(J'to\O'j+f3 t +l-'t- 1 -;,naj--W ' 

(2.28) 

and the contribution from the bare ladder 

vBn ....,.! n (I X
i+1 dx; L 

W ;=1 0 161T2 

x J da;dj3;d"if;o(ii; + f3; + 7P; - 1~ I: (na; 

where we interpret x n+1 as lnv. 

Define the Mellin transform of g(x) by 

~%(g) = 101 
xA.-lg(x)dx (2.30) 

following Refs. 1 and 2. Transforming (2.28) with res
pect to 11w, the parametric integrals factorize and we 
can write 

(n) JInv I X
2 ~1Iw(wvW2 ) = z· 0 dx n KY(X n )'" 0 Ky(xl)dx, 

(2.31) 
where 

K=£ 1 
16rr2 A(A + 1) 

(2.32) 

Finally we sum over n . Writing 

~l/W(wVwJn» =Xn (2.33) 

and X for the sum, and regarding them as functions of 
lnv, A being held fixed, we have 

X IX dx' - = - KY(X + 1) 
z 0 z 

(2.34) 
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(2.35) 

Equation (2.34) can be solved immediately to yield 

X=:: z [exp(foX dx' KY(x'») - IJ 
SO, writing 

Y =:: fox Y (x'}dx', 

we obtain 

~1/w(wvW2) ~ z(lnv) [exp(1~:2 Y (lnv) \ - IJ 
A(A + 1») 

(2.36) 

(2.37) 

(2.38) 

for the contribution to vW 2 of the ladder graphs with 
gluon rungs only. All the difference between the bare 
ladders and the dressed ladders is summed up in these 
two functions z and Y. 

3. ASYMPTOTIC BEHAVIOR OF RENORMALIZATION 
PARTS 

We use methods similar to those of the previous sec
tion to calculate the asymptotic behavior of renormali
zation parts. The renormalization parts that are impor
tant in our dressed ladder graphs are those that can be 
drawn in the forms of Fig. 3. Other irreducible vertex 
parts, and box diagrams, lead to lower than leading be
havior and need not be calculated. This is because, as 
we shall see, every divergent loop integral leads to a 
logarithmic enhancement in the asymptotic behavior, 
and only the diagrams of Fig. 3 have the maximum num
ber of such loops. 

The principle of the calculation is to replace every 
subdiagram by its asymptotic form and to sum over all 
possible subdiagrams. Graphs with overlapping diver-

, 

(a) 

, , , 

(b) 

---o---~ 
(c) 

FIG. 3. Important renormalization parts. 

----cD--- FIG. 4. Diagram with overlapping 
divergences. 
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gences will be counted more than once, according to the 
number of ways they can be partitioned into skeletons. 
For example, the graph of Fig. 4 will be counted twice, 
according to the partitions shown in Fig. 5. 

A natural interpretation of this prescription would be 
that for such graphs contributions to the leading behavior 
come from several distinct regions of integration, and a 
particular partition focuses attention upon a particular 
region. 

The above procedure defines inductively the asympto
tic behavior of every graph. Working in terms of the 
sums to all orders, we obtain simple integral equations 
for the leading contributions of all the graphs of Fig. 3. 

We use again expressions (2.1), (2.2) and (2.4), (2. 5) 
for the renormalized propagators and vertices. We also 
require expressions for the sums of all OPI self-energy 
graphs. For the fermion we write 

~(Q) ~ (2~)4 Q f; In lnn(- Q2) 
t 1 

=:: (27T)4 Q F(x) (3.1) 

and for the gluon 

K(Q) ~ (2~)4 Q2 I; g n lnn(- Q2) 
z 1 

=:: (2~)4 Q2 G(x). (3.2) 
Z 

We obtain the propagators by summing over all possi
ble OPI insertions, and so we have relations between F 
and S,G and T: 

S=::[l-F]-l, 

T=::[l-G]-l. 

(3.3) 

(3.4) 

Let us now calculate the asymptotic behavior of the 
photon vertex of Fig. 6. Once again the contribution 
from the vertices is not well defined. We must take as 
asymptotic variable minus the square momentum of one 
of the lines in the loop. It will be shown to make no 
difference which one. Naively the Feynman integral we 
obtain is 

f d4r g2Y5(P + i)y~(p + g + 1'}Y5 

[(p + r)2 _ m2] [(p + q + r)2 _ m 2] [r2 _ A2] 

x V(ln[- (P +r)2])S(ln[- (p +r)2])U(In[- (p+r)2]) 

x S(ln[- (p + q + r)2])V(ln(- r2» T(ln(- r2», (3.5) 

and this represents the sum of all important vertex 
parts except for the bare vertex. So expression (3.5) is 
asymptotically equal to 

[(27T)4/i]YIl[U(lnt) - 1]. (3.6) 

The term 1'y,/1 in the numerator leads to a logarith
mic divergence. This is the term that gives the leading 
asymptotic behavior. Since we are using pseudoscalar 
gluons, we get no enhancement from the infrared region, 
but we would not be interested in that region anyway 
when we insert the vertex in a ladder. Only the ultra
violet region leads to enhancements in the ladder dia
grams. We pick out the YYIlY term,parametrize as in 
Sec. 2, and naively perform the symmetric integration. 
We obtain 



                                                                                                                                    

1605 A. L. Mason: Deep inelastic scattering 

~ Y
ll 

fO dxdydz (VSU)(-Inx)S(- Iny)(VT}(-lnz)eD/C, 
1611'2 0 C3 (3.7) 

where D and C are the parametric functions for the 
simple bare vertex loop. We may consider the integral 
to be regularised according to Hepp's8 prescription 
by cutting off the parametric integration at some small 
value. We renormalize by subtracting in the integrand 
the constant term in the Taylor expansion in powers of 
the momenta. The point we take the expansion about is 
unimportant. It corresponds to a finite renormalization 
which will introduce only an additive constant negligible 
compared with the leading logarithmic behavior. If we 
also scale over x, y , and z, we obtain 

[U(lnt) - 1] ~ L J dp (V2S2 TU)(-lnp) 
1611'2 p 

x J dXdydz o(x + y + z - 1) (exp(p.5"jC) 

_ exp{- p[(x + y) m2 + z~2]}} (3.8) 

We have once again discarded the terms in lnx from 
(Inpx)P etc. as we did before Eq. (2. 24). Our integral 
is now convergent and we may integrate by parts with 
respect to p. (U V2 S2 T)(- lnp) represents a power 
series in lnp, and so we may consider one term at a 
time. It is easy to see that 

JOO lnnp 1 Joo (a ) o dp p f(p) = nn 0 dp Inn~lp - ap f(p) 

(3.9) 
provided the surface term 

[lnn+lpf(p)]; (3.10) 

vanishes. Remarking that the transformation 

Inn p ~ Inn~l p/(n + 1) (3.11) 

looks like an integration, we can now rewrite Eq. (3. 8) as 

U(lnt) - 1 ~ (g2/1611'2) J dp Ru(- lnp) a~ 

x J dXdydz o(x + y + z - 1) expp .5/C, (3.12) 

where 

Ru(x) = JX (UV2S2T}(x')dx' 
o 

(3.13) 

and we have dropped what remains of the counterterm 
since it gives only a term independent of the momenta. 
We may write 

.5/C = (gIC) t + die. (3.14) 

t is the variable we wish to take asymptotic. Performing 
the differentiation in (3.12) and picking out the term t, 
we see that 

U(lnt) - 1 ~ (g2 11611'2) t J dp Ru(- lnp) 

x J dXdjdz 0 (x + y + z - 1)g Ie exp[ p(g IC) t] 

x exp(p dlC). (3.15) 

And from Appendix A this gives 

U(lnt) - 1 ~ - g2 Ru (Int) J dXdydz o(x + y + z - 1). 
161T2 (3.16) 

The integral in (3.16) equals!, and so we have de
rived the following equation connecting the renormaliza
tion parts: 
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--tQP-- --<[3-
FIG. 5. Two distinct partitions of graph of Fig. 4. 

q 

/ 

r / 
/ 

/{ FIG. 6. General photon vertex. 

/ 
/ 

U(x)-l =_g22 JX U(~) V2(~)S2(~)T(~)d~. 
321T 0 

(3.17) 

The only way in which the gluon vertex of Fig. 3{b) differs 
from the photon vertex is that the important numerator 
factor is 11'5 1 instead of 1y

1l
1. This gives an extra 

factor of - 2, so that 

V(x) - 1 = ~ r V3(~)S2(~) T(~)d~. (3.18) 
161T2 0 

The gluon self-energy part (Fig. 7) leads to the unre
normalized Feynman integral 

_g2 J d4r Tr[Y5(~ + 1)Y51] J dxdy(VS}(-lnx) 

x (VS)(- lny) exp[x(Q + r)2 + yr2 - (x + y) m2]. 

(3.19) 
Both the quadratic and the logarithmic divergences 

give important contributions here. 

Taking account of displacement terms, we have that 
the important part of the trace is 

(3.20) 

where r' is the symmetrized loop momentum. Perform
ing the symmetric integration and renormalizing gives 

[(21T)4Ii]Q2G(ln(- Q2» 

~ - 4g2 i1T2 J (dplp) (V2 S2)(- lnp) 

x J dxdy o(x + Y - 1)[- (2/p)(exppxyQ2- 1 _ pxyQ2) 

- xyQ2 (exppxyQ2 - 1)]. (3.21) 

Integrating by parts reduces this to 

[(21T)4Ii]G(ln(- Q2» ~ 12g2i1T2 J dp RG(-lnp)a/ap 

x J dXdyxyo(X +y -1)exp(pxyQ2 -pm2), (3.22) 

where 

(3.23) 

whence 

G(ln(- Q2» ~ + 12(g2/161T2)RG(ln(- Q2» 

J dXdYxy o(x + y - 1). (3.24) 
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x 
a+r 

FIG. 7. Gruon self-energy part. 

, ' 
......... ~----",../ 

Y 

+--

FIG. 8. Simple "rain
bow" graph. 

r 
---~----

p p 

We can now use the relation (3.4) to rewrite this 

(3.25) 

A similar procedure with the fermion self-energy part 
gives us 

F(x) == 1- _1_ == ~ IX V2(~)S(~) T(~)d~. 
Sex) 321T 2 0 

(3.26) 

Equations (3.17), (3.18), (3. 25), and (3.26) form a 
solvable set of integral equations for U, V,S, and T. By 
writing 

y == V2 S2 T, z == U2 S 

as in Sec. 2, the equations give, upon differentiation, 

and 

u' /U == - (g2/321T 2)y, 

S' /S == (g2/321T 2)y, 

y'/y == (5g2/161T 2)y. 

V' /V == (g2 /161T 2)y, 

T'/T == (g2 /81T 2)y, 

These are easily solved to give 

U(x) == [1- (5g2/1&2)X]1/lO, 

and 

V(x) == [1- (5g2/161T 2)x]-l/5, 

Sex) == [1- (5g2/161T2)X]-1/lO, 

T(x) == [1- (5g2/161T2)x]-4/10, 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

z(x) == [1 - (5g2/161T2)x)1/10 (3.31) 

Y(x) == JX y(x')dx' == - (161T2/5g2) In[l- 5g2/161T 2)x]. 
o 

(3.32) 

Results resembling (3.30) have been obtained by a 
number of authors. Most recently Appelquist and Pri-
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mack6 obtained expressions for the form factors in a 
charge symmetric model by calculations similar in 
prinCiple to ours. (They also quote results for the 
theory with only a neutral gluon. These are identical 
with equation (3.30)). Their results agreed with earlier 
work by Landau,Abrikosov, and Khalatnikov4, who 
solved integral equations for the Green's function in a 
cutoff model. J. C. Taylor5 also obtained the same re
sults by renormalization group arguments. Solving 
functional equations connecting cutoff and renormalized 
form factors leads to expressions of the form 

(3.33) 

for the functions V, S, and T. The quantities a and n i are 
calculated from second-order perturbation expansions. 
We remark that our technique also reduces just to cal
culating second-order graphs. 

4. SIMPLE EXAMPLES 

It is not obvious at first sight that the important con
tributions to the scattering amplitude should come from 
the asymptotic regions for the renormalization part. In 
this section we demonstrate that it is true for some 
simple examples. We also demonstrate [example (D)] 
that diagrams containing fermion boxes are also impor
tant. 

(A) We consider first the diagram of Fig.8. Ignor
ing the term proportional to the fermion mass, the re
normalized amplitude for the self-energy part can be 
written 

i1T2g2~ J<O dp lnp (- ~) J dXdy 0 f.% + y - 1) 
o ap 

x [exppxy Q2 - 1] exp[- (pxm 2 + PYA2)], (4.1) 

where 

Q==p+q+r, (4.2) 

following the procedure of the previous section. The 
second term in the square bracket leads only to a con
stant when integrated. We shall see that it can again be 
neglected. This throws the self-energy contribution into 
what we shall find is a characteristic form, namely, 

i1T2g2~ J dp lnp (- a~) J dUW expp ~, (4.3) 

where ~ represents the internal variables of the renor
malization part. 

To evaluate the complete amplitude, we note that, 
neglecting the terms proportional to m, we can cancel 
(Q2 _ m 2) from the denominator of one of the propaga
tors in the top line, against Q2, the product of numerator 
factors. The contribution to T~v becomes 

( 

ig2 \ d 4ru(p)Y5(t + p)y~(t + JI + rj)yv(t + JI)y5u (P) 

- (21T)4j J [r2 _ A2][(r + p)2 _ m2][(r + p + q)2_m2] 

x ~ J dP(-lnp)(-~) J dXdYo(x + Y -1) expQ. 
1&2 ~ C 

(4.4) 
The most important contribution arises from contract

ing the JI from the wavefunction with the" from the top 
line and taking the loop momenta from the other terms. 
That is, the important numerator term containing a fac
tor of q is 
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~o 

---~~----

FIG. 9. Cancelled graph corresponding to Fig. 8. 

x ~ 
/ 

/ 
/ 

Y / 

//y 
/ 

/ 

a, 
--------

0(" 

(1/4m) Tr[Jlryl' rlYu r] 

~' FIG. 10. Ladder graph 
with dressed vertex. 

'" (- ~ r2) (l/m) (PI' qu + P u ql' - gl'uP' q), (4.5) 

neglecting displacement terms. Performing the loop in
tegration, we find the contribution C to W2 

C '" 2m (g2 )2 1m. J daodal df3 l df31 J dp(- lnp) (_ ~) 
W 161T2 1T ap 

exp(F/E) 
x J dXdyy 6(x + Y - 1) ----::...:..."'---'---------

(a o + a 1 + f3 l + f31 + pxy)3 
(4.6) 

We write E and F for the parametric functions C and 
D for the "cancelled" graph (Fig.9) corresponding to our 
original graph (Fig. 8). We have 

F/E== 2m II g/E + d/E (4.7) 
with 

g __ [a 1 - (l/w)(a l + f3 1 + f3])] 
- == (a o + pxy) • (4.8) 
E (ao + a l + f3 l + f31 + pxy) 

If we perform the scaling of (2.21) with the difference 
that 

we see that g /E scales as 

gjE == alaO g/E 

(4.9) 

(4.10) 

Keeping, as usual,only Ina 1a O from the term InalaOp, 
we obtain 
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x J da1d~ld~1 6(Ql + /31 + /31 + ao - 1)( - :p) 
x J dXdYy{j(~ + y _ 1) exp(2mllO"oa1g/E) exp(a1 d/E) 

Cal + ~ + ~ + ao(ao+ pxy»)3 

(4.11) 

and the usual invocation of Appendix A gives us the 
asymptotic behavior 

C '" ~ ( g2 )2 1m In211 J diiodp6(iio + P _ 1) 
WII 161T 2 1T 

X J dii1d{3ldi316(a1 + (3l + 131-1) (- a~) 
x J dXdyy6(x + Y - 1) (~rl (4.12) 

At this stage we can see that no other terms in the 
amplitude c'ould have given as big a contribution as the 
term we have chosen. Writing the imaginary part of 
(g/it l as a delta function, we have 

(4.13) 

and by Appendix B we can remove all the p's from the 
last integral, whereupon it reduces to 1. So we have fac
torized the amplitude 

IIC'" (g2/161T 2) J dXdyy6(x + Y - 1) • lnll 

x (I/W)(g2/161T2) In II J da l d{31d /31 6(ii l + (31 

+ 131 - 1)6(0'1 - l/w) (4.14) 

into a product of the bare ladder contribution and the 
asymptotic behavior of the propagator, agreeing with the 
prescription of Sec. 2. 

(B) A similar analysis may be made of the diagram 
of Fig. 10. The ultraviolet term in the vertex part, when 
renormalized can be written 

- i1T 2g 2 y J dp lnp (-~)' J dXdydZ6 
I' ap 

x (x + y + z - 1) exp(pD/C'). (4.15) 

Plugging this into the rest of the graph and following 
the same procedure as before, we find that g /E scales 
in the same way, and we have 

(4.16) 

So we can again write the contribution to IIW 2 in the 
factorized form 

IIC'" (g2/161T2 ) J dXdYdz6(X + y + z - 1) lnll 

x (l/w)(g2/161T2) lnll J da1d{31d{31 6 (ii l 

+ ~1 + ~1 - 1) 6(ii1 - l/w) (4.17) 

(C) We now consider a diagram where the renor
malization part is not on the top rung-Fig. 11. The 
gluon self-energy part gives the renormalized contribu
tion 
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- 12r2i112 g2 J dp lnp (- a~) J rIXdyxy6 

x (x + y - 1) expp g. (4.18) 
C 

and we use the r 2 to cancel the denominator of one of 
the neighboring gluon propagators. 

Then the corresponding contribution to W 2 is 

C '" 2m (g2 \ 1m J do odo 1df3 1d(31 
w l&iJ 11 

x (- 12) (L) J dp (- lnp) (-~) 
16112 ap 

x J rIXdYxyo(X + y _ 1) exp(F /E) 
(00 + 01 + (31 + (31 + pxy)3 

(4.19) 
where E and F are the parametric functions of the can
celled graph, Fig. 12. The coefficient of 2mll in F /E is 
given by 

g 00[01 + pxy - (l/w)(ol + (31 + (31 + pxy)] - = (4.20) 
E 00 + 01 + (31 + (31 + pxy 

So if we make the scaling 

00 = 0"10"0' 0 = 0",6, (4.21) 

where 0 represents {01,f31,(31'P}, 

g /E scales in the usual way, and we get 

C '" 2m (g2 \2 1m J dO"ldO"o(- InO"l) 
W 1&n 2 ) 11 

X J dpda 1d/31d(31 6(a 1 + /31 + /3'1+15 +0"0 - 1)(- a~) 
x (- 12 J rIXdYxyo(x + y - 1) 

x exp(2mw10"0g-/E + 0"1 d/E») (4.22) 
(01 + (31 + (3i + pxy + 0"0)3 

From this we get, applying Appendix A and taking the 
imaginary part, 

1 ( g2) 2 In2
11 J - - -IIC '" ~ -- -- djidii1d(31df3'1 6 (01 

W 1&n 2 2 

+ if1 + if'l + P - 1) (- a~) (- 12) J dXdyxy 

x 6~ + Y _ 1) 0 ( iii + pxy _.!..). 
a1 + fi1 + (31 + pxy W 

(4.23) 

The argument of the 6 function is homogeneous of 
degree zero so that we can again apply Appendix B to 
remove p's. The result can be written 

IIC'" .! J d (lnll) (- 12) L J dXdyxyo(X + Y - 1)\ 
W \ 16112 I 

x lnll (1;;2) J dii1dJj1dli16(al + li1 + li1 - 1) 

x 6 (~1 - ~) (4. 24) 

in agreement with the result of Sec. 2. 

(D) ConSidering the Bjorken-Johnson-Low limit, 
Polkinghorne9 found that diagrams like Fig. 13 gave 
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(3/ FIG.H. Diagram with the re

normalization part off the top 
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FIG. 12. Cancelled graph corresponding to Fig.H. 

contributions greater by a power of qo than ladder dia
grams. In the deep inelastic limit we find that they 
give contributions of exactly the same order as ladder 
graphs. For we can write the integral in the form 
(2.14), with 

N",,, '" (-1) Tr[(r1- r 2)r1'Y",(t1 + f)Y"r1]P' (p-r2). 
m 

(4.25) 

We have for the displaced loop momenta r1 and r2 
_ , + 01 00 r 1 -r1 r 2 - q+O(O"), 

01 + (31 + (31 01 + (31 + (3i 

° ° x p - 1 0 q + 0(0"). (4.26) 
(°1 + (31 + (31)(°2 + f3 2 + .82) 

The term corresponding to the divergence of the box 
graph is proportional to g",,, so does not contribute to 
IIW 2 (and its imaginary part is zero anyway as we shall 
see in Sec. 7). Important terms inN",,, quadratic in r 1 
and r2 are 

{r12[1 + 01/(01 + f3 1 + (31.)]4(r2",q" +r2"qll-gllvq'r2) 

- 2rl.· r 2 [1- 01/(01 + (31 + (3])] 

x 4(r~lIq" + r1"q",-gll"q'r1)} r 2 . p/m. (4.27) 

Symmetrizing, this becomes 

(- ~r12)(- t r22)[2 + 601/(01 + (31 + (31)](P",q" 

+ p" qll - gll"P' q), (4.28) 
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0(0 

FIG. 13. Diagram containing 
fermion box. 

and we see that this differs from the numerator for the 
ladder graph only by the factor [2 + 6ad(a1 + f3 1 + f31)], 
which does not affect the scaling. So there is at least 
one term in the graph of Fig. 13 which is as important 
as the corresponding ladder graph. In fact we shall see 
in Sec. 7 that we can find several other important terms 
as well. 

5. JUSTIFICATION OF SEC. 2 

As we shall prove in the next section, the leading con
tribution from a renormalization part takes the form 

(2~)4 J (_ lnp )nr dp (_a_) 
t r r apr 

x J d~ fr(~) eXPPrF,./Er , (5.1) 

where r labels the particular renormalization part, Fr 
and E r are the parametric functions for the correspond
ing cancelled graph,and Cr is Q2,~,g'Y5,or 'YJJ depend
ing on what sort of renormalization part it is. 

Taking this form for the insertions, we can write 
down a convergent Feynman integral for any dressed 
ladder graph. If we cancel the C r terms of self-energy 
parts against the denominators of neighboring propaga
tors as in the examples of Sec. 4, we obtain the amplitude 
contributing to TJJIJ 

CJJIJ 0: i~1 (Jo'" da i df3 i d f3j J d4ri) Jo'" daoN~~) 
x 'J)-1(r,p,q}' IT R r • (5.2) 

r 

As we see, this resembles (2.13) and (2.14) quite 
closely. We can perform the symmetric integrations 
under the integrals shown in (5.1). We can write 

n 

iI]1 (J d4ri)N~:)'J)-1(r,p,q) ~ e Fr
/
Er 

=fJJIJ(p,q,a)e F
/

E
, (5.3) 

where F and E are the parametric functions for the com
plete cancelled graph. We show in Appendix C thatg/E, 
the coefficient of 2m II in F /E, scales in the same way 
as g /C in the bare ladder graph, and so the same terms 
in N JJIJ will be important, namely the terms 

n 

0: IT r~(PJJqIJ+·PIJqll-gIlIJP·q). (5.4) 
.=1 

Let us define the scaling more explicitly. We write 
[cf. (2. 21)] 
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(5.5) 

where ° k represents the set { a k , f3 Il' f3'k , P r k} and rk 
indexes those renormalization parts lying on the lines 
with index k. 

Then integrate successively with respect to r 1 ,r2 •• .rn • 
Completing the square and shifting the origin, we find the 
coefficient of r 12 has the form 

A1 = a 1 + f3 1 + f31 +.6 a r1 Pr 1 + O(ao) (5.6) 

and, continuing, 

So we find, for the contribution to W 2' 

Co:! 1m J da o Ii (J da.df3.df3'.) 
W 1T i=1 ••• 

x ~ f dP r(- lnpr)n
r 
(- a~r) f dUrW (;;i~3 

(5.8) 

Now scaling as in (5.5) throws the integral into the 
standard form of Appendix A (since from Appendix C 

~ = n a. i) 
E i=O • if 

(5.9) 

leading to the asymptotic behavior 

Co: !. 1m _1_ 
W 1T 2mll 

x 
(Nn + l)(Nn + Nn-1 + 2) ••• (N1 + ... + Nn + It) 

X J da o i~O (f dii i d{3i d{3;) 

x ~ {J dPr(- a;)f dUrW} 

n 

IT 
x i=O 

o(a i + ifi + ~i + .6 P ri - 1) • 

From Appendix C we have 

(g/it1 I 
( ITA i)3 0=0' 

(5.10) 

where H 0 is homogeneous of degree zero with respect 
to each group of variables (indexed by i) separately. 
We have 

H(ii,{3,O)=(~ iii 1)-1 
z=1 a i + f3 i + f3i W 

(5.12) 

We can therefore use the result of Appendix B to sim
plify the integral of (5.10). Applying it to each group 
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(5. 13) 

successively, we can remove every p factor (and a o) and 
reduce the amplitude to 

1 1 (Inll)E" r+n 
C<x- -

W II (Nn + 1) ••• (Nn + ... + N 1 + n) 

n 

X TI f dt'i;d{3;d{3';o(t'i; + 13; + {3; - 1) 
;01 

x o (TICY; -~) ~ f dUr(~) (5.14) 

Comparing equation (5.14) with (2.26) and (2.27), we 
see that if we can identify the factors 

(5.15) 

with the coefficients of the logarithms in the asymptotic 
expansions of the renormalization parts, we have indeed 
justified the prescription of Sec. 2. 

6. CONTRIBUTION OF RENORMALIZATION PARTS 

As we have seen in Sec. 5, the terms from renormali
zation parts which are most important in the deep in
elastic limit are those with the highest powers of the 
logarithm of the over-all scaling parameter. These are 
also the terms controlling the ultraviolet asymptotic 
behavior of the renormalization parts. 6 We shall calcu
late the important terms inductively, assuming for 
lower-order graphs the canonical form of (5.1). 

We consider first the vertex parts. These are sim
plest because they have superficially no overlapping 
divergences. The important vertex graphs can be 
written uniquely in the skeleton form of Figs. 3(a) and 
(b). We calculate the renormalized vertex amplitude 
by plugging in the renormalized values of the subgraphs 
and making a Single subtraction from the resulting 
Feynman amplitude.10 If we cancel as many denomina
tors as we can against the numerator factors, we obtain 
for the naive Feynman amplitude (neglecting m terms) 
for the vector vertex of Fig. 6 

g2 f d4r 1'5(11 + "h,.. (11 + « + ,,) 1'5 
[(p + r)2 _ m2][(p + q + r)2 _ m2][r2 _ ~2] 

X ~ [f dPr (- lnpr)"r (- a;J f dUr WeFr! Erl 

(6.1) 

The same manipulations as in Sec. 3, with the scaling 

0= po, 0 E ~,y,z,pJ, (6.2) 

give for the important part of the renormalized ampli
tude 

A '""'I' irr 2g 2 f dp (_lnp)En
r

+1 (- ~) f dXdydZ 
Ii,.. .Bn r +1 op 

x ~ V d~1 o(X + y + Z + .B p .. - 1) ~ [( - o;J 

x f dU (~)l exp(pF!E) (6.3) 
r J B3' 

where 

B=x+y+z+arPr 
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and 

F xzp2 + xyq2 + yz(P + q)2 + O(Pr ) + O(m2) 
= E x + y + z + O(pr) 

(6.5) 
We see that the amplitude is now in the canonical form 

(2:)4 ")I,.. f dp(- Inp)N+1 (- aO 
) f dUuW exp(pF u/Eu)' 

p (6.6) 

And as in Sec. 3, we can write down the asymptotic 
behavior as any invariant is taken asymptotic 

(6.7) 

So we can indeed identify f d~1 u(~) as a contribution 
to the coefficient of (Int)N+1 in the asymptotic expansion 
of Eq. (2.4). NOW, of course, we use Appendix B to re
move the Pr • We can write 

f dXdydZ TI (dPr) o(X + y + Z + .B Pr - 1) 
r 

x ~[(- a~;) f d~/r(~~ (X +y + i + .B ar Pr t 3 

= [f dxdydEO(x + Y + E - 1n TI [f dUr W], (6.8) 
r 

whence 

f I .. (~) d~ (Int)N+1 = - g2 TIr [f dUr(m (Int)N+1. (6.9) 
32rr2 N + 1 

And we recognize this as a Single term from the ex
pansion of Eqs. (3.17). So, for the vector vertex we have 
justified the prescription of Sec. 3. The gluon vertex 
can be treated in just the same way. 

The self-energy parts present more difficulty because 
they generally do have superficial overlapping diver
gences. We follow Appelquist and Primack in using 
Ward identities to treat them. For the fermion self
energy parts we have the identity 

0'" .B (p) = - A'" (P,p). (6.10) 

It is convenient to use this in the integrated form 10 

1 .B (p) - .B(p') = - fo d~(p - P'),..A'" (p"A,PA), 

(6.11) 
where 

pA. = ~p + (1 _ ~)P'. (6.12) 

Neglecting terms with a factor of m we have 

pF(p2) '""' p'F(p'2) - J1 d~(P - P'),.. A'" (p".pA) 
o (6.13) 

and since this holds for all p and P' the terms propor
tional to p' on the right-hand side must cancel, giving 

(6.14) 

We have seen that A'" can be written in the canonical 
form of (6.6). Now we must show that it can be re
written in a form corresponding to a self-energy dia
gram. 

With each self- energy diagram the Ward identity 
associates all those vertex parts obtained by inserting 
a photon vertex in a fermion line. The important ver-
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tex graphs, of the form of Fig. 6, we obtain by insert
ing the photon vertex in the line x of Fig. 14. The 
photon vertex may be inserted either between two 
self-energy subdiagrams or directly into one, so that 
we may represent the graphs arising from Fig. 14 by 
Fig. 15. 

We use the Ward identity (6.10) to write the subver
tex in Fig. 15(b) as - o~ ~ (pA. + r) and looking at our 
canonical form for ~ (p), Eq. (5.1), we see that we get 
the main contribution by differentiating the factor 
(pA. + t) outside the integral. If we now write out the 
amplitudes of Fig. 15 in the form (6.1), we see that 
graphs (a) and (b) give exactly equal and opposite con
tributions. And there is one more of type (a) than of 
type (b). So, corresponding to each skeleton of Fig. 14, 
we have the unrenormalized amplitude 

g2 1 d4r 'Y5(pA. + t)y~ (flA + f)Y5 
[CpA. +r)2-m2)2[r2-A2] 

x ~ [1 dP r (- lnpr)nr ( - O~r) 1 dUrW eFrlEr] , 

(6.15) 
where the product runs over the subgraphs of Fig. 14. 
We choose to parametrize by 

[CpA. + r)2 _ m 2]-2 = 1000 

dx x exp{x[(pA. + r)2 - m2]}. 

(6.16) 
Then symmetric integration gives us the exponential 

factor e Fsi ES, the factor corresponding to the self- energy 
graph of Fig. 14. Renormalizing and scaling, we find the 
contribution to Ali (PA,pA.) corresponding to a single 
self-energy diagram is 

~ i1T2g2'Y~ 1 dp (_lnp)L:nr+1 (-~\ 1 dXdy x fI dP
r 

6 ~ nr + 1 opj r 

X orx +y + ~Pr-l) ~{(- 0;;) 1 dUrW 

(6.17) 

FIG. 14. Diagram giving important vertex part. 

+ 

(a) 

J. Math. Phys., Vol. 14, No. 11, November 1973 
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B' =x +y + L; a~Pr 

and 
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(6.18) 

(6.19) 

Now since (6.17) holds for all P' we can replace 
(pA.)2 by [A2 p2 + (1 - A)2 O(m 2)], and we might as well 
drop the second term since mass terms in the exponen
tial do not affect any of our results. Substituting (6.17) 
in (6.14), we find we can write ~ (p) in the form 

L;(p) ~ -.- p f dA 1 dp (- Inp)N+1 --(21T)4 1 ( 0 ) 
t 0 op 

1 (
F. (AP») 

x dUF(O exp -7F;- , (6.20) 

differing from the canonical form by the A factors. How
ever, no singularity arises from the A integration so that 
we can perform all the usual manipulations under the 
integral. We can see that 

L;(p)~ (2;)4 P 1 dUFW (101 dA) InN+1(_p2) (6.21) 

as p2 ---. - <Xl so that we can identify J dUF W as a 
contribution to the coefficient fN+1 in Eq. (3.1). 

The A factors do not affect the arguments of Sec. 5. 
We can simply wait until the p terms have been removed 
and then trivially integrate. It is also easy to see that 
they do not affect the argument when the expression of 
(6.20) is inserted in another renormalization part. So 
we may replace (6.20) by the canonical form. 

As before we use Appendix B to remove the Pr from 
1 dUFW. We find 

1 j, Wd~ ·lnN +1 (- p2) = ~ fIr [1 dUr(~)] InN+1(_ p2) 
F 321T2 N + 1 ' 

(6.22) 

which has the form of a term from the expansion of 
(3.26). 

Gluon self-energy parts are more complicated still. 
We first show that the important graphs have the incom
ing and outgoing lines attached to the same fermion loop. 
For if not, they can be divided into subgraphs jOined by 
two or more gluon lines, and except for box graphs such 

(b) 

FIG. 15. vertex diagrams ariSing 
from Fig. 14. 
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graphs are superficially convergent and therefore do not 
lead to a logarithmic enhancement of the highest order 
for the whole diagram. At first sight, box graphs, e.g., 
Fig.16, look important. It looks as if we must make re
normalization subtractions at four levels, and in our 
previous experience each subtraction adds a logarithm 
to the asymptotic behavior. However, as Salam pOinted 
out,ll counterterms of the form of Fig. 17 are indepen
dent of the momentum p and may therefore be absorbed 
in the over-all subtraction. This reduces the number of 
subtractions to thr.ee with no overlapping divergences 
so we see that the diagram only gives a [In(- p2) p, non
leading, enhancement. For the same reason we need not 
worry about box diagrams occurring in the form of Fig. 
18. The counterterm corresponding to the box is of the 
form of Fig. 17 and may therefore be neglected. We 
might have deduced that box graphs are unimportant 
from the fact that Appelquist and Primack obtained 
agreement with renormalization group calculations 
without considering them. 

We can now write a Ward identity connecting the re
maining self-energy diagrams and photon-2 gluon ver
tices. We have 

- aIJK(p) = VIJ (P,p). (6.23) 

VIJ(P,p) represents the sum of all vertex graphs ob
tainable by inserting a photon vertex in, say, the top fer
mion line of a self-energy graph. Naturally, if we made 
all possible insertions, the amplitude would be zero by 
Furry's theorem. (6.23) closely resembles an iden
tity found by Salam12 for a Charge symmetric theory. 
He, however, had to insert vector vertices in meson 
lines also. 

Just as before, we rewrite (6.23) as 

(6.24) 

The important graphs contributing to VIJ are shown in 
Fig. 19 (a) and are obtained by inserting the photon ver
tex in the line x of Fig. 19{b). By the same arguments 
as above we write VIJ(p>" ,p>..) in terms of the parametriC 
functions FT/E T of the self-energy graph. We can write 
the contribution to VIJ(p>",p>") from a single self-energy 
diagram: 

;\ • ~ _ i1f2 g2 pIJ J dp (- lnp)~n r+1 (_~) 
6 ~nr + 1 ap 

x(- 8)[2y + ix + O(P r )] 
x J dXdy IT dp 

r B" 

x O(X + y + ~ Pr - 1) ~ [( - a;J 
J ~ exp(pFT/ET) 

x dHr(~)J B"3 

almost identical to (6.17). This leads to 

K(P) '" (2~)4 p2 J 2AdA J dp(- Inp)N+1 ( - a~ ) 
x J dHG(~) exp[F T(;\P)/E T ] 

with 

J dHGW = g2
2 

IT [J dHrW] 
81f r 
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agreeing with (3.25). Once again the ;\ factors may be 
removed without affecting anything, to give us the canoni
cal form for the gluon self-energy part. This completes 
the induction. 

7. LADDER GRAPHS WITH EXCHANGE OF FERMIONS 

As we saw from the example D of Sec.4 there is 
another important class of diagrams beSide those we 
have already considered. This is the class of ladder 
graphs with exchange of fermions. We use Fig. 20 to 
define our notation for a graph with N + 1 rungs. 

Let us first consider the Feynman integral corres
ponding to a bare graph with no numerator factors. 
Scaling as in (2.21), we find the amplitude takes the 
form 

m m 

A ex: Jo IT (do;o/) i~l [J diiidf3idf3iO(iii + ffi + iYi 

+ °i-1 - 1)] exp[2mv(~ o~ ~ + om ~J C2. (7.1) 

In this case the leading behavior comes completely 
from the 0 0 scaling. 

Now we consider the effect of possible numerator fac
tors. We write rj for the jth loop momentum with ori
gin displaced. Then a factor rJ 2 leads, upon symmetric 
integration to an extra factor 

(7.2) 

which contains scaling factors (IT j 0 ir1. So if we have 
a factor Tj'2 for each segment of the ladder, we exactly 
cancel the factor ITO' 0ii in (7.1). This is the case in 
the simple ladder graph. 

Another important factor is p . q IT {;1 0 i , which we 
associate with the j th segment. Assuming a factor r',.2 
for every other segment, this multiplies the integral 
of (7. 1) by p . q and changes the product of scale fac
tors to IT 0' 0 i' Looking at Appendix A, we see that the 
factor IT 0' 0 i moves the pole in the Mellin transform 
one unit to the left, and the factor p . q moves the pole 

__ ~_A~~~-~~~-A->--
V _______ y 

FIG. 16. Important-looking diagram. 

----..- "-
/ "-

I \ 

( \ 
I I 
\ I 
\ I 
, I , / 

" ;' 
-----~ ---:::..~:::.- ---;>---

p p 

__ + ___ r::::::J ___ ~ __ 

FIG. 17. Diagram ariSing 
during renormaIlzation. 

FIG. lB. Graph containing 
single box diagram. 
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one unit to the right. So asymptotiCally this amplitude 
is as important as the previous one. We can construct 
factor P . q rr jo1 a i from displacement terms in the 
graph of Fig. 20. In simple ladders they cancel them
selves out as we see in Appendix D. 

We must also consider the class of numerator factors 
giving rise to divergent box graphs. We may represent 
an amplitude corresponding to such a numerator by Fig. 
21, where the blob represents the renormalized box 
graph. We can write the leading contribution from the 
box graph in the usual form, 

J dp lnnp (- iJ~) J dH(~) exp(pF,tE). (7.3) 

It is intuitively fairly clear that the amplitude defined 
by Fig. 21 cannot have an imaginary part, since when we 
cut it across the middle in optical theorem fashion we do 
not obtain any recognizable y - P scattering reaction. 
This intuition can readily be verified by a calculation 
similar to that of Sec. 5. 

Now that we have disposed of the divergences, we can 
use the prescription of Sec. 2 to calculate the contribu
tion of the remaining terms. The chief difficulty lies in 
enumerating the important numerator factors. 

The numerator N/l V is the product of n + 1 traces 
m 

NJ.lv = (- 2)m n T i • (7.4) 
,~O 

The factor 2 m arises because we must count boxes 
with the fermion lines directed in both senses.13 We 
use GP's Fierz transformation technique to rewrite the 
traces in a tractable form. As before only the vector 
couplings give important contributions, and so we can 
write 

(7.5) 

D/' = [ga /l (q + r 01)V + gav(q + r 01)/l - g/lv(q + r 01)a] 

if i = 0 (7.6) 

(a) 

o<.On I I I .5~ITr: 
cX..O_0.r"o(. .... o_, J...l ___ ---L! __ rl.._ot.J_ ~: : 

.6" 
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and 

Cia = Palm if i = m 
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= 4[2rifa rij . (ri/ - r i +10) - (rif - r i+10 )a ri~] 
(7.7) 

otherwise. 

Now the only important part of the factors (2ra. t aj -

r2g a ._1'7) comes from taking the displaced loop ~-omen
tum ~, from r as we show in Appendix D. Symmetrizing 
then gives us the factor (- t r'2 ga j-l a j ), just as for the 
simple ladder. For the other factors, however, we must 
consider also the displacement terms. We have 

1 +!2 1 + aj a j +1 r' + ... + rrN !:.!!.. P rj = rj r j +1 ·+2 
2:; . 2:; .2:; ·+1 J j 2:; 
• J J J k 

-C~1 ak/~ 6 k) q + O(a). (7.8) 

As we see in Appendix D, important contributions can 
arise from loop momenta linking factorsD~+1 Cia and 
DJ+1 Cja. We shall first of all, however, consider the 
contributions which do not involve such cross linkings. 
We find that such contributions to (- 1)Dr+1 Cia can be 
written symmetrized as 

[( 1 12) ( 1 '2 ) (6 a if 2) g~ -Zrif -Zri +10 6ij + 

+ (- t r;J)2p·q (~ n ~)(6 aif + 2\ 
6 i +10 1 6k 6 if ') 

(7.9) 
+2p . (aoo NO a k )( 1. 12 )4 aij q -- -- - 2 r. +1 0 --

6if 1 6 k ' 6 i f 

+ 2p .q(aoo ~ .!!.!..)2p.q (~ f{ ala) 2 ~J 
6ij 1 2:;k 2:;i+10 1 6k 6 if 

So, effectively,Do and C m couple together to give a 
factor 

(b) 

o(mo 

p 

FIG. 19. Important vertex 
graphs and the self- energy 
graphs from which they are 
Obtained. 

FIG. 20. Ladder graph with fermion 
exchange. 



                                                                                                                                    

1614 A. L. Mason: Deep inelastic scattering 

(7.10) 

where we have considered only those terms of the tensor 
decomposition which contain a factor q. 

We must introduce two more functions besides y to 
describe the effects of the renormalization parts in the 
segments labelled f and O. We write 

(7.11) 

Then we can write the contribution to W2 in exactly 
the form of (2.24) except that corresponding to the seg
ments (if) and (i + 1 0) we have the operation 

U~ln(~) ak)f da!di3!d~'t{j(a!+~!+~f +a ini -1) 

x v (- In ff a k) f daod~od~o{j(ao + ~o 
(;+1 0) 

+ ~o + at! - 1) 

X[(2 P .q ~ a k 

(7.12) 
From Appendix A we see that the effect of a factor 

(2P • q n gal/) is to make the change 

(7. 13) 

in the coeffiCient of the leading term. And we have the 
relation14 

1m (x _ iO)-P-1 = (- l)P (j(P)(x). 
7r r(p + 1) 

(7.14) 

So, writing for the factor in square brackets in (7. 12) 
the expression 

[(~ a~\-:ir 2a;! +(1 a~(-a~1(10aif+2) 
+ (6&if + 2~, (7.15) 

we can express the contribution to IIW 2 in the form of 
(2.28). It is straightforward to verify that the arguments 
of Sec. 5 still apply, so that the above procedure is valid. 
In particular, we can still use the reduction procedure of 
Appendix B. 

We can reduce the amplitude to a factored form now 
by Mellin transforming with respect to T = 1/ w. Inte
grating by parts, we can exchange the operators (-a/aT) 
acting upon (j(T - n ak) for operators (a/aT) acting upon 
Til.. We then find that we can perform the parametriC 
integrations explicitly, and we can sum up all the terms 
we have just considered in the form 

E(s) = z(lnll) [i~ {n~o (j ICY )n; Li(s) f KU f ICV r 
x n~o (j ICY)" - 1]. (7.16) 

where 

K = (g2/167r 2)[(:\ + 1)(:\ + 2)]-1 (7.17) 

and for the terms with no cross linking of loop momenta 
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q 

q 

FIG.21. Graph containing divergent box. 

L;(s) = [2/(:\ + 3)][(2:\ + 2) S2 + (12:\ + 6) s + 8:\ + 12]. 
(7. 18) 

The integrals must be regarded as operating on every
thing to their right and the final argument is lnll. We 
obtain the contribution to 'J1l1/ w (IIW2) from E(s) by the 
rule-expand E(s) in powers of s and replace sn by 
r(:\ + l)/r(:\ - n + 1). 

We see in Appendix D that the terms involving the 
cross linking of loop momenta give rise to factors simi
lar in form to (7.9). For every different linking, then, 
we obtain an expression of the form of (7.16), but with 
different coefficients of sn in (7.18). Tp find the com
plete contribution to 'J1l(IIW2), we must then sum E(s) 
over all possible cross linkings. 

We can simplify our expressions somewhat as follows. 
First it is convenient to make the substitution 

X --7 Q = foX KY (x') dx' • (7. 19) 

Then, since 

~ (f dQ)" X = e Q f Q e-(/ dQ'X(Q') - X, 
n=O 0 

(7.20) 

we have 

E(S)=Z{~o [Li (eQf e-Q +1)fw-1 fw]; 

x (e Q f e-Q + 1) - 1} . (7.21) 

An attempt to evaluate 

T = I; {(e Q f e-Q + l)Af w-1 f W}i X (7.22) 
i=O 

leads to the differential equation 

d
2
Z _ (1-~ (lnw~ dZ _ (A +..!:....- (lnw~ Z =X 

dQ2 dQ '} dQ dQ'J (7. 23) 

for Z = T + X. We cannot solve this for arbitrary w, but 
if w takes the form e kQ (as in the case when we use the 
amplitudes calculated in Sec. 3), it reduces to an equation 
with constant coefficients and we can solve it. Then we 
Can write 

E(A)=z.exp[i(l-k)Q]( i(l+k) / 
[i(l + k)2 + A]l 2 

x sinhQ[i(l + k)2 + A)1/2 + coshQ[i (1 + k)2 

+ A)1/2) - z, (7.24) 

where E(A) is defined by replacing L; by A in (7.16) or 
(7.21). We can expand this in powers of A as 

~ A r [1 ( k)] ~(1 d l)T . (1 1 d) T LJ - z· exp 2 1 - Q 2-
d 

- smhp, Q + 2 - d-
po r! p, P, P, p, 

x coshp,Q J~=(1+k.v2 - z. (7.25) 



                                                                                                                                    

1615 A. L. Mason: Deep inelastic scattering 

o.s..----r---T 
1vw, 

o·/J-----+------;l 

2 20 
w ------,.. 

FIG. 22. Comparison of the experimental curve for vW2 with curves 
described by the model with (g2/16lT 2) Y = (i) 5 (ii) 6 (iii) 7. 

Then, replacing A l' by 

B C~l L; (S»), (7,26) 

where the sum runs over all possible cross linkings, we 
have a prescription for calculating ';)IT (II W 2) as a series 
parametrized by the number of fermion rungs in the 
corresponding ladder graphs. 

It is poSSible, with a great deal of algebra, to evaluate 
expression (7.26) in a fairly compact form. When the 
substitution 

s" ~ ;\(;\ - 1) ,., (;\ - n + 1) (7.27) 

is made, the almost miraculous result 

I) (fi L;(S») ~ [4(;\ + 1)(;\ + 2]1' (7,28) 

is obtained, This means that, with A = 4(;\ + 1)(;\ + 2), 
Eqs. (7,24) and (7.25) give ';)IT (II W 2) directly. 

8. DISCUSSION 

In this section we discuss what we Can say about the 
amplitude IIW 2 on the basis of the foregOing results. 

As we remarked in the Introduction the expressions 
for y and z calculated in Sec. 3 are unsatisfactory. For
mally we can easily take account of nonleading contri
butions from renormalization parts. We may choose 
to consider the term involving Inn-r a InT 15 from the 
amplitude 

1 dp Innap (- a~)J dU(~)eFIE. (8.1) 

Then we can carry the argument of Sec. 5 as far as 
Eq. (5.10), but we can no longer apply Appendix B to re
move the p's. So the contributions from different renor
malization parts in the same segment can no longer be 
factorized and separated from the basic ladder para
meters. We can still sum up all the terms in one seg
ment in a single function, however, to write 
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1 lie ~w J dX~(X)' n {r"i+l x~;dx; J1ji(X)dX}/)(~). 
t=l 0 E 

(8.2) 

A Mellin transform factorizes the /) function just as 
before, and we obtain 

J
lnv 

';)IT(WIIW2) = ~(lnll,;\)[exp 0 1j(x,;\)dx -1] (8.3) 

from the graphs with gluon rungs only. We can no longer 
identify the functions 1) and ~ with products of asympto
tic form factors. We shall take this resuft as an excuse 
to use formula (2.38) making whatever assumptions we 
like about the form of y and z. 

It is convenient to regard the Mellin transform with 
respect to 1/ W as a Laplace transform with respect to 
t = lnw. Then we can write the contribution from the 
gluon ladders in the form 

IIW ~ z £-1 I) a n I [00( )1~ 2 1 (;\ + 1)(;\ + 2) . , 
(8.4) 

which can be rewritten as a sum of convolutions of 
a(e- t - e-2t). In fact, instead of using the Mellin trans
form to factorize the expression (2.27), we might have 
written it as a convolution using the property 

By working in terms of repeated convolutions, it is 
easy to see that 

f oO IIW2(w,lnll) (g2 ) 
1 dw = z exp -- . Y - 1 

W 321T2 
(8.6) 

and that the contribution to this integral from the n-rung 
ladder has Poisson distribution with respect to n. This 
is because, writing 

II f II = 10
00 

J(t) dt, (8.7) 

we have 

II J * g II = II J II . II g II (8.8) 

If we want to preserve scaling in this model, we must 
assume that the functions Y and z both tend'to constants 
limits as Inll goes to infinity, Making this assumption, 
we find that we can obtaj.n the right general shape for 
IIW2 (see Fig. 22), but with unsatisfactory behavior near 
w = 1, where our amplitude behaves like 

(g2/161T2). y. z· (l/w - 1/w2). (8.9) 

If we are prepared to make assumptions about the 
form of u and v, we can also calculate the contribution 
from graphs with fermion rungs. Using the formula 
(7.25) and taking k to be small, we find that the contri
bution from ladders with one fermion pair is of the 
same order as the contribution from the graphs with 
gluon rungs only. This would predict that the present 
scaling law should break down when antibaryon produc
tion becomes important, as was recently suggested by 
Wilson.15 

ACKNOWLEDGMENTS 

I would like to thank Professor J. C. Polkinghorne for 
suggesting this problem and reading the manuscript. I 
also thank the Science Research Council for a mainten
ance grant. 



                                                                                                                                    

1616 A. L. Mason: Deep inelastic scattering 

APPENDIX A: ASYMPTOTIC VALUE OF A CLASS OF 
INTEGRALS 

We find tliat the amplitudes whose asymptotic behavior 
we wish to calculate can be reduced to an integral of the 
following form: 

A~ J ~o[da;a/lnn;(j~ia~J~(exp(-j~O aj .gv)} 
(AI) 

where we have taken v to be the asymptotic variable. 
~ may be alm6st any linear operation-multiplication 
or integration or differentiation with respect to internal 
variables of g. 

Performing a Mellin transform 

(A2) 

(we now use a different definition from that of Sec. 2 to 
conform with Ref. 7) gives 

~~) - r(- m J ~ [datal Inn; (~ aj)J~(g( ~ aj ) B) 

== r(- m J ~ [at lnn;( V a} da~/(a,,8). (A3) 

Then we assert that the behavior of this integral near 
its leading singularity in [3 (at [3 == - P - 1) is 

rep + 1)(- l)~~n; 
~~) == +1+:6"n 

([3 + p + l)n 0; 

x (no + ... +nn +n)!!(a,mlo=0.1l=-1-P (A4) 

(nn + 1) ••• (nn + ... + n 1 + n) 

Clearly this requires some restriction on ~ to ensure 
that !(a,,8) 1 0 =0 B=-1-p is not zero or infinity. So the 
asymptotic behavior of the amplitude itself is given by 

(A5) 

We prove ,Eq. (A4) by induction. First we remark that 
we can expand the factors Inni(n: aj ) in multinomial 
series, so that we can rewrite (A3) as 

J I' ~~) =L; C(m,n)r(- (3) n (a~+Blnm;a; da;)!(a,,8) 
;=0 (A 6) 

with 
n n 

L; m;= L; n t • 
;=0 ;=0 

(A7) 

Now, integrating by parts repeatedly with respect to 
each variable in turn and keeping only the most singular 
terms, we arrive at 

(_ l):6g mj 

~~) ~ L; C(m,n)r(- (3) :6nm,+n+1 
.. (,8 + p + 1) 0 , 

x (~ mj 1 J ~ [a/+
1

+
p 

da;( - a!;)]!(a, m. (AB) 

The integral is now convergent when we set ,8=-l-P 
and so we obtain 

~~) == rep + 1) ~ C(m,n) (~ m j !) 
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(_ 1):6,,; 
x !(O,- 1 - pl. (A9) 

([3 + p + 1):6 n ;+n+1 

Here we have established the general form of Eq. (A4). 
We need only evaluate the sum over the multinomial 
coefficients. 

Clearly (A4) holds for n = O. Suppose it is true up to 
n == m - 1. Then for n = m we can write 

~~) ~ ,,~o (:0) J (daoarB In"o-r 0'0) 

x r(- (3) J H1 [da j a/+
8

1n
n
';( q a~J 1(0',[3) (AI0) 

where 

=n; +r, 

i ,.< 1, 

i = 1. (All) 

Then the second factor in (AI0) has the form of (A3) 
for n = m - 1 if we just rename the index, i. So we can 
write 

x 
""m , 

(,8 + P + 1)U1 ni+ m 

(n 1 +r +n2 + ... +nm + m -l)!!(O,-l-p) 
x 

(n m + 1) ... (n m + ... + n 2 + rn - 1) 

I; (no) (no - r)! (n1 + ... + n m + r + rn - I)! 
,,=0 r 

Ito 

=n O !(n 1 + ... +nm +m-l)! L; 
r=O 

X (n1 + .. , + nm + r + rn - 1). 
n1 + ... + nm + rn - 1 

(A12) 

(A13) 

The sum on the right-hand side is equal to the coeffi
cient of x n1+'" + n m+m-1 in 

no 
(1+xtl+ .. o+nm+m-1 L; (l+x)" 

1'=0 

and that is just 

(
no + ... + n m + rn) 

n 1 + ... + n m + rn • 

If we substitute this back in (A13), we get 

~o (:0) (no - r)! (n 1 + ... + n m + r + rn - I)! 

(no + ... +nm + rn)! 
= 

(n 1 + .. ·+n m +m) 

(A14) 

(A15) 

(A16) 

and substituting this into (A12) gives us (A4), completing 
the induction. 

APPENDIX B 
In this appendix we show how to simplify a class of 
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~~".~ 
~~----~~~; 

· . · . · . · . 

~t----:'~ ..... 
FIG. 23. Cancelled, dressed ladder. 

FIG. 24. Inductive rep
resentation of r •. 

----@> ........... . 

integrals which appears very frequently in the above 
work. We have 

where Ho is homogeneous of degree zero. 

We shall show that we can just remove all the integra
tions and differentiations with respect to the p's and set 
all remaining p's to zero. 

Consider the expression 

rtn) 10"" Ii dXi ri[dPi (- a~)J {Ho(p,x) 

x exp[- (~ Xi + ~ ajPj)]} (B2) 

If we scale by 

-
Xi=UX i , Pj=UPj' (B3) 

(B2) reduces to 
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X duun-
( 

Ho(p,x) 1"" 1 

(~X; + ~ajPj)n 0 

x (~Xi + ~ajPj)ftexp[-u(~Xi+ ~ajPi)]) 
I(m,n) (B4) 

as we see upon performing the n integration. But in ex
pression (B2) we can immediately perform the is integra
tions. This reduces it to the form we would obtain by 
transforming I(O,n). So we have proved 

I(m,n) = I(O,n). 

That is, 

1 f"" n - - '" -I(m,n) = -- n dx; Ho(O,x) exp(- LJX;) 
r(n) 0 

= ·f1 n dx. o(~ x. _ 1) (Ho(O,x) • 
o ' , (~xi)n 

APPENDIX C: PARAMETRIC FUNCTIONS FOR 
CANCELLED, DRESSED LADDERS 

(B5) 

(B6) 

(B7) 

We want to investigate the scaling properties of g/E, 
the coefficient of 2m" in F /E, with respect to the scaling 
parameters a j , defined in (5.5). The terms in E and g 
that determine the scaling behavior are those that scale 
least. These are the ones we need to calculate. We 
shall use the rules given in Ref. 7 to calculate E and g. 
E and F are the C and D functions for the cancelled 
diagrams of Fig. 23, where the blobs represent can
celled OP! renormalization parts. So to find E we must 
consider sets of cuts that will just leave r ft' the diagram 
of Fig. 23, connected. We can represent r 11 as in Fig. 24 
so that it is built up from y" and r n-1' We see that we 
may either leave r n-1 connected and divide Y n in two or 
vice versa to obtain Crn' But to divide r n-1 requires 
one more cut than leaving it just connected, which im
plies one more parameter scaling as a ,,-1' So such 
terms may be neglected, and we may write 

where d rn represents some terms of F rll.' Repeating 
this procedure n times, we obtain 

n ( '" d ri ) E=C r =n E n a·+{3·+W+LJ-
" T r i=l ' , , ri E . 

r' 
(C2) 

+ higher orders in a. 

Consider now the coefficient of 2 P . q in Dr, An' say. 
This is obtained by partitioning r n so that the "incoming 
momentum in one part is P + q (see Fig.25). So, in the 
same way as before, we obtain 

( 
'" d~n) An = An- 1 n Ern an + LJ -E ' 

Tn rn rn 
(C3) 

whence 

A = n Er(ao + ~ d~O) n r E rO yO 

x n (a i + ~ d~.) 
i=l ri Eri 

+ higher orders in a. (C4) 
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The coefficient of q2, K n arises from three types of 
partition (Fig. 26). We obtain 

K = K n E (01 + fl + fl' + ~ d rn) 
n n-1 rn Tn \ n n n Tn Ern ' (C5) 

whence 

+ highest orders in a. (C6) 

Putting the results (C2), (C4), and (C6) together we 
can write ' 

~ = (01
0 

+ ~ d~O)n (01; + ~r; d~dEri) 
E r 0 E rO J=1 (01; + fl; + fli + ~ d r ; jEri) 

r; 

+ higher orders (C7) 
or 

where the a's are functions of the internal variables of 
the renormalization parts. 

We remark that setting all the p's to zero gives the 
result for a bare ladder 

01 0 n - - . _ n (iii 1) 
i=1 01; + fl; + flj w 

(C9) 

APPENDIX D 

We c an use equations (7. 5) - (7 • 8) to write the numera
tor (7. 4) as a sum of inner products of the momenta p, 
q and the displaced loop momenta rj. Consider one term 
in such an expansion. The r; 's must occur in pairs-we 
shall see that terms containmg four or six or more are 
negligible. Generally the rj's will not occur in the form 
rj2 but each will be contracted with another vector. The 
symmetrization then will contract these vectors together. 
So we obtain chains of vectors held together by symme
trization and inner products. 

We find that the dominant terms are characterized by 
the disposition of their chains on the ladder. We call a 
segment those lines of a ladder with the same index and 
we say that one segment is higher than another if it has 
a lower index. NOW, if in a particular chain we can re
place a pair of loop momenta rj by another pair with a 
lower index then the first chain is negligible. This 
means, from (7. 8), that the index of such a pair must be 
the same as the index of the lower of the segments from 
which the two momenta are taken. Because of the vector 
nature of the coupling this means that terms quartic in 
rj are negligible, since if one vector in a segment couples 
to a higher vector the other must couple to a lower. We 
can show that dominant chains are of the form either rj2 
with both terms from the same segment or are monoto
nic, with a q at the top and a p at the bottom. By mono
tonic we mean that every succeeding vector in the chain 
comes from a segment not higher than its predecessor. 
We can see this by breaking up any nonmonotonic chain 
into monotonic sub-chains and substituting q's and P's 
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FIG. 25. Partition of r. to give An' 

p 

2 3 

FIG. 26. Partitions for Kn' 

p 

at their ends. This procedure gives a permissible term 
that dominates the original one. 

Taking account of the above requirements the impor
tant factors from a segment with a gluon rung are 

(D1) 

Symmetrizing and remembering that this will be 
coupled to similar terms on both sides, we see that 
everything cancels except the terms quadratic in rj , as 
we asserted in Sec. 7. 

We cannot eliminate nearly so many terms from the 
special segments with fermion rungs and chains linking 
several such segments are possible. We can, however, 
still write the contribution of individual terms fairly 
Simply. Clearly the contribution to a particular term 
from the special segments is proportional to 

(p.q)i n r~2 (D2) 
k 

after symmetrization, where the k's index some of these 
special segments. Consider the following groupings of 
the vectors from the special segments. Start with a q 
factor (omitting the q in the top line). It may come from 
a D~+1 term in which case we choose for the second vec
tor the vector indexed by 01 in the term Cia correspond
ing to the segment above. Alternatively it may come 
from Cia' In this case it must come from the inner 
product, and for the second vector we choose the vector 
to which it is coupled. If, in either case, the second vec-
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tor is a p, then the group is complete and we go on to 
the next q. If it is r; , we go on to the partner rj and re
peat the above procedure. In this way we arrange all the 
vectors into groups corresponding to particular q's or 
to individual rj pairs from the same segment. 

Now, multiplying the coefficients together, we find that 
we have corresponding to each q a factor 

a o ~ all 

6 j 1 6 II ' 
(D3) 

to each r? nothing but a constant factor, and for each 
three-fermion segment we mayor may not have a factor 
proportional to a i /6 i , depending on whether a displace
ment term is taken from the vector r[ +1 0 in (7. 7). 

For the case when we have no cross linking except in 
Cia D i ~ l' we have explicitly written out the coefficients 
in (7.9). 
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Unitary representations of the SL (2, C) group 
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The matrix elements of unitary representations of the S L (2, C) group are derived in a basis defined 
by two-dimensional momenta corresponding to the horospheric subgroup (J r). A parametrization 
fitting the above basis well is chosen on the analogy of the rotation group by sandwiching a complex 
rotation about the y axis with two horospheric translations. In this way the two outer subgroups can be 
factored out immediately in terms of plane waves which are counterparts to the exponentials formed 
by the Euler angles <p and 1/1 occuring in the rotation group. Finally, matrix elements of complex 
rotations about y axis are found by solving the simultaneous eigenvalue problem of the two Casimir 
operators. Unitary representations obtained in this way are expressed in a rather simple form in 
terms of Bessel functions. 

INTRODUCTION 

Mter the work of Bargmann,1 Naimark,2 and Gel 'fand 
et al. 3•4 it appeared that all fundamental questions re
lating to the representation theory of the SL(2, C) group 
could be considered as closed. Yet, when investigations 
concerning relativistic expansions of the scattering 
amplitude raised the problem of finding an explicit 
form for unitary representations, considerable difficult
ies were encountered. Results obtained for the repre
sentations in angular momentum basis were expressible 
only in terms of multiple sums over complicated ex
pressions, and bases corresponding to the reductions 
SL(2,C):J 0(2,1):J 0(2) [or 0(1,1)] and SL(2,C):J E(2) 
:J 0(2) led to Similarly complicated formulas. (A far 
from complete list of references is given by Refs. 5-14.) 
It would appear, then, that although the use of the above 
bases is supported by the interpretation of the scatter
ing amplitude as a function of the little group of the 
Poincare group, there is still great importance to be 
attached to the investigation of the matrix elements of 
unitary representations in other bases. 

Since the finite-dimensional representations are very 
simple in spinor baSiS, it is not surprising that a con
siderable simplification of unitary representations can 
be achieved by introducing unitary spinors. The struc
ture of matrix elements in this basis is analogous to 
that of the D functions of the real rotation group: Two 
of the Euler angles, cp and 1/1, and their complex conju
gates appear in the form of exponential factors, while the 
dependence on J and its complex conjugate ,,* is con
tained by dt."("'''*), a complex analog of the familiar 
dt. .. (J) functions.1s- 17 The deeper reason for this ana
logy lies in the fact that the proper Lorentz group is 
isomorphic to SO(3, C), the connected part of the group 
of motions of the two-dimensional complex sphere S~ + 
S ~ + S~ = S2.18 The labels of unitary spinors can be 
obtained as the eigenvalues of Casimir operators of 
SO(2, C) = (8' ~l)' the little group of a certain fixed point 
of the complex sphere. 

In the present paper it is shown that the so-called 
horospheric basis offers an opportunity for a still fur
ther Simplification of matrix elements of unitary re
presentations. To this end the subgroup of the SL(2, C) 
group of the form Cb f) will be conSidered, where (3 
ranges over the whole complex plane. This subgroup, 
which is isomorphic to T(2), the real translation group 
in two dimensions, plays an important role in repre
sentation theory of the SL(2, C) group. 4 Orbits that are 
described by it or by any conjugate subgroup in any 
space homogeneous under the SL(2, C) group, are the 
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horospheres. In particular, in the group space itself the 
horospheres are straight generators of the surface 
ali - y{3 = 1, which explains their central role in repre
sentation theory of the SL(2, C) group. 

The horospheric subgroup can, in fact, be obtained 
from the above spinor subgroup by means of a group con
traction.19 It can be shown that the little group of a 
certain point on the complex sphere Sf + S~ + S~ = S2 
is SO(2, C) or T(2), according to whether S =f 0 or S = 0.20 
Consequently, if the little group of a point on a complex 
sphere of radius going to zero is conSidered, in the limit 
the little group SO(2, C) contracts into the T(2) group. 

That means that the unitary representations of the 
SL(2, C) group in horospheric basis can be obtained from 
those in unitary spinor basis by means of a contraction. 19 
Actually, the explicit form of representations in horo
spheric basis has been found in this way, since we could 
not find the solution of the eigenvalue equations for the 
representations [Cf. Eq. (2. 6)]. Having obtained the re
presentations in this way it was easy to verify that they 
satisfy the related eigenvalue equations. In order not to 
encumber the approach we have omitted the description 
of the contraction procedure, even though it offers some 
insight into the structure of the matrix elements obtained. 

The use of the horospheric group isomorphic to the 
translation group makes natural the labeling of the 
basis by means of a two-dimensional momentum in 
addition to the eigenvalues of the Casimir operators of 
the SL(2, C) group. This basis is not new in the litera
ture, since it is used as soon as the ordinary Fourier 
transform of functions on the familiar z space is 
taken.2- 4 •10 Furthermore, in Ref. 9 it was utilized to 
derive the matrix elements of boosts along the third 
axis, while certain applications to hadron phYSics have 
also been touched on. 21 

In what follows only the principal series of unitary 
representations will be treated. This is sufficient 
from the point of view of the harmonic analysis of func
tions on the group, since any square integrable function 
can be expanded in terms of representations of the 
prinCipal series; the supplementary series does not 
give any contribution.2- 4 

Owing to the good fit of the parametrization to the 
chosen basis, four of the six parameters of the SL(2, C) 
group can be factored out immediately in terms of 
"plane waves." The function containing the two remaining 
parameters satisfies two formally independent differ en -
tial equations, which have a regular solution if, and only 
if,jo' the label characterizing irreducible representa-
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tions, takes integer or half~integer values. The solution, 
finally, can be expressed in a simple form in terms of 
Bessel functions of imaginary argument. The represent~ 
ations obtained seem to have a simpler form than those 
in any other basis. 

1. PARAMETRIZATION AND BASIS 

The spinors ~ = (u, v) form a homogeneous space 
under the SL(2, C) group, provided the point (u, v) = 
(0,0) is excluded. The action of g E SL(2, C) can be 
given in the form ~' = g~,i.e., 

Let us fix noW a standard point in the spinor space, 
say, ~o == (b). The little group of this point [i.e., the 
subgroup of the SL(2, C) group satisfying the condition 
h~o = ~o] is 

_ (1 -' il/l) 
h - , o 1 

(1.1) 

where 1/1 ranges over the whole complex plane. The 
factor (- i) is' introduced only for later convenience. 
The subgroup (1.1) isomorphic to the real translation 
group in two dimensions is known as the horospheric 
subgroup. 4 

The translation property of this group can be demon
strated on the linear fractional mapping 

z' == (az + J3)/(yZ + 0), 

where g == (a~) E SL(2,C). In particular, the action of 
the horosph~ric subgroup (1.1) is the displacement 

z' == z - il/l. 

Since (1.1) satisfies the condition h~o = ~o' each ele
ment of SL(2, C) can be decomposed as a horospheric 
translation followed by a motion in the spinor space. 

An appropriate parametrization of spinors for our 
purposes is 

u = cos(~/2) - icp sin(~/2), v == sin(~/2), (1. 2) 

where both cp and sin(J/2) range over the whole complex 
plane. This parametrization applies for each (u, v) ex
cept for the singular value ti = O. It should be noted that 
the functions cp(z) ::= cp(u/v) used by Gel'fand et al. (d. 
Ref. 4, p.142) are not defined for the same value of v 
either. 

Starting from the standard spinor ~o == (b), the above 
parametrization can be also obtained with the aid of the 
following SL(2, C) transformations: 

(u) = (1 - iCP) (COS(J/2) - Sin(J/2») (1). 
v 0 1 sin(J/2) cos(~/2) 0 

(1. 3) 

The subgroup (1.1) parametrizes the little group of ~o' 
while (1.3) parametrizes the left cosets of SL(2, C) with 
respect to the subgroup (1.1). Every point ~ = (u, v) of 
the spinor space represents one left coset, while each 
element of the little group (1.1) characterizes the ele
ments within a coset. 'This leads finally to the follOwing 
decomposition of the SL(2, C) group: 
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g == (1 - iCP) (COS(J/2) Sin(I/2») 
o 1 sin(J/2) cos(J/2) (

1 - il/l) 
o 1 ' 

(1.4) 

where the complex parameters 

cP = CPI + iCPa, ~ == ~I + iJ a, l/I = l/II + il/la 

range over the limits 

(1. 5) 

The matrix in the middle of the decomposition (1. 4) 
describes a complex rotation about y axis by an angle 
" ="1 + i"2 which can be verified to be equivalent to a 
rotation by an angle J 1 about y axis followed by a boost 
by a hyperbOlic angle - ~2 along the same axis. 

As was mentioned in the Introduction, the horospheric 
group (6 iiJl) can be obtained frorp. the group of complex 
rotations about the third axis (f,,/2 0 +il/l/2) by means of 
a contraction. This is the reason for "keeping the nota
tion usual for the Euler angles, even though neither cP 
nor 1/1 is an angular variable, since neither their real 
nor the imaginary parts are cyclic. 

Comparing Eq. (1.4) with the remark on the singular 
case v = 0, we conclude that each g = (r ~) E SL(2, C) 
can be decomposed in the form (1. 4), provided y ,.. O. 
For the sake of completeness, a short comment ought to 
be made on the singular case y = O. Since the little 
group of the point ~o has been fully parametrized, it is 
sufficient for the parametrization of the Singular case 
y = 0 to parametrize the (~) spinors starting from the 
standard spinor (b). Clearly, this can be accomplished 
by means of the subgroup (ff 0 _}) (a ,.. 0) describing di-
1atations of ~o' Thus any g E S1(2, C) for w~ich y == 0 can 
be parametrized as g(a,l/Io) = (8 ~-1) (51'1/10). 

These values of the parameters can be approached by 
a one-parametric manifold of cp,J,1/I given by (1.4). To 
this end let 

sln(,,/2) = t, icp ::= (1 - a)/t, il/l = (1 - a-I )/t + il/lo• 

Then g, as given by (1. 4) approaches g(a, 1/10) as t is 
going to zero. Therefore, the unitary representations 
corresponding to g(a, 1/1 0) can be evaluated in two ways: 
either directly,in terms of a,l/Io,or via cp,J,l/I by 
approaching t ~ O. The -consistency is proved by the 
fact that representations obtained in these two ways can 
be shown to coincide. 

Denoting by Mil and Nil (k == 1,2,3) the generators of 
rotations about, and boosts along, the kth axis, the linear 
combinations 

Jk=!(Mk+iNk)' Kk=!(Mk-iNk) 

satisfy the Lie algebra of two independent angular 
momenta 

[J k,Kz] = 0 (k,l,m = 1,2,3). 

In what fOllows, the usual notation 

(1. 6) 

(1. 7) 

will also be used. Since the elements of a real Lie alge~ 
bra have been multiplied by complex numbers, the cor-



                                                                                                                                    

1622 M. Huszar: Unitary representations 

responding parameters fail to remain real. The restric
tion imposed on the parameters can be obtained from 
the requirement that for any Lie group, the bilinear form 
€AXA (where €A are the parameters of the group in 
question and X A are the corresponding generators) be 
invariant under different parametrizations and under 
different choices of the basis in the algebra. It follows 
that if the parameters corresponding to J + and J 2 are 
denoted by J+ ~ qJ, J 2 ~ ", the parameters correspond
ing to K_ and K 2 will be their complex conjugates K_ -l> 

qJ*, K2 -l>J.*. 

Since infinitesimal generators of the horospheric sub
group (1.1) can be given as Ml - N 2 and M 2 + N1,or, 
equivalently, as J. and K_, the unitary representations 
of the group can be written, in accordance with the de
composition (1.4), in the symbolic form 

T() -i'l'J+ -i'l'*K_( -i6"J2 -iJ*K2) -'",J+ -i1/>*K_ g =e e e e e e 

= e -i'l'1(M1-N2) e i'l'2(A1z+N 1) (e -i" 1M2 e i"2N2) 

(I. 8) 

It is easy to recognize the analogy to the Euler decom
positipn of the rotation group, where a rotation about y 
axis is sandwiched by two rotations about Z axis. In the 
present case the rotation about y axis is a complex one, 
and the role of the subgroup of rotations about z axis 
plays the horospheric subgroup. 

Unitarity imposes on the generators the condition 

(J ± ) t == Kp J~ = K 2' 

Irreducible representations of the SL(2, C) group are 
characterized by jo taking integer and half-integer 
values, and by a complex number (] taking real.values 
for the prinCipal series of unitary representations. 
Eigenvalues of the Casimir operators 

J2 =Jf +J~ +J~, K2 =Kf +K~ +K~ (1.9) 

are conveniently written in the form J2 -l> j(j + 1), K2 -l> 

k(k + 1), where j and k are related to jo and (] for the 
principal series by 

j = Hjo - 1 + i(]), k = - j* - 1 = H- jo - 1 + i(]). 
(1.10) 

On the basis of the decomposition (1.8) it is natural 
to reduce irreducible representations, characterized by 
the above X = (j, k), according to representations of the 
horospheric subgroup. This group is Abelian, so that its 
representations are exponential functions 

(1.11) 

where P is a complex momentum 

P = HP1 + iP2), p* == ~(Pl - iP2) (1.12) 

with continuous spectrum. In what follows the two
dimensional vector notation P = (Pl>P2 ) will also be 
used. 

Reduction of irreducible representations of the group 
according to those of (1.11) is an ordinary Fourier ex
pansion. The basis in which the unitary representations 
of SL(2, C) will be given is labelled by the above momen
ta: 

j" j k j k p* j k ( 13) J +</J pp* = P</J pp* , K-</J pp* = </J pp*. 1. 

Unitary irreducible representations can be realized 
on functions qJ(z, z*) of DX, the space of infinitely differ-
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entiable functions with infinitely differentiable inversion 
~(z,z*) == z2i z*2"qJ(-I/z,-I/z*).4 If representations 
are defined by left displacement"the action of represen
tations on the functions qJ(z) == qJ(z, z*) E DX will be 

TX(g)qJ(Z) = (- yZ + a)2i(- y*z* + a*)2k 

x qJ«oz - (3)/(- yz + a» (1.14) 

In this space, the generators J.,K_ take the form of 
differential operators J+ = - a/az, K_ = a/az*. There
fore, the solution of Eq. (1.13) can be written in the form 
of the "plane wave" 

</Jpp*(z) = (1/211)e-Pz +
p*z*. (1.15) 

This is obviously not an element of the space DX , nor 
even, due to the continuous spectrum of P, of a Hilbert 
space including the space DX. Hence to treat the re
presentations rigorously one has to proceed as follows. 22 

We conSider the </J pp*(z) functions given by (1. 15) as 
functionals on the </J(z) functions 

+(P, P*) = (</J, qJ) = J d 2z</Jpp*(z)qJ(z) (d2z = d Rezdlmz) 
(1.16) 

The value of the functional depends then on the para
meters p,p* ,which results in the above +(P,P*) func
tion. We define the action of the representations Ti on 
+(P,p*) as 

Ti+(P,P*) = Jd2z </Jpp*(z)(yz + 0)-2j-2 

x (y*z* + 6*)-2k-2qJ«az + (3)/(yz + 0». (1.17) 

Representation given by this formula is the same as 
that in Eq. (1.14), but expressed in terms of generalized 
functions. Really, by substituting (az + (3)/(yz + 0) ~ z in 
(1.17) we get 

T}+(P,P*) = J d 2z (- yz + a)2J(- y*z* + a*)2k 

x </J pp*«oz - (3)/(- yZ + a»qJ(z). (1.18) 

Expressing now qJ(z) from (1.16), this equation assumes 
the form 

T}+(P,P*) = (211t 2 J d 2z e-Pa'+P*z'*(- yz + a)2i 

x (- y*z* + a*)2" J d2Q eQz-Q*.z*+(Q,Q*), (1.19) 

where z' = (oz - (3)/(- yZ + a) and d 2Q = dQ 1dQ2' Q = 
HQ1 + iQ2)' Thus the "matrix elements" of the repre
sentation T} can be interpreted as the kernel of the in
tegral transformation (1.19), provided the interchange of 
the order of integrations is legitimate. 23 That is 

1,}+(P,P*) = J d 2QT &t>(g)+(Q,Q*) 

with 
Tck(g) = (211)-2 J d 2z eQa-Q* 8*(_ yZ + a)2J 

x (- y*z* + a*)2"e-PZ'+P*z'*, (1.20) 

where again z' = (6z - (3)/(- yZ + a). The evaluation 
of this integral is not, however, the best way of deriving 
the matrix elements, and so we shall proceed in another 
manner. 

2. MATRIX ELEMENTS OF REPRESENTATIONS 

By making use of the parameters introduced above, 
we can represent infinitesimal generators in terms of 
differential operators on the group and, by solving the 
eigenvalue equations of the Casimir operators, obtain 
the matrix elements of the representations. Regularity 
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requirements will yield automatically the quantization 
of jo' 

Let f(g) be a function on the SL(2, C) group. Then 
the action of the representation T(go) on f(g) can be 
defined by left displacement: 

T(g o)f(g) = f(lfOlg). 

From this the following infinitesimal generators are 
derived: 

1 i:l 
J+=i i:lcp' 

J_ = ~ (1 + cp2 + 2icp cot,,) ...E.. - 2i (1 - icp 1 -. cosJ.) 
t \ i:lcp sm" 

a 2' 1 a) 
x 0 "q - 1cp sinJ aljl 

1( . i:l .1-cos"i:l 1 i:l) 
J 3 =T (cotJ - tcp) aq, + t sinJ 0'" - sinJ oljl , 

K = ~ (1 + m*2 - 2im* cot,,*)-~ + z ..,.. ..,.. ocp * 

2 '(1 . * 1 - cos"*) 0 2' * 1 0) + t + zcp sinJ* aJ*" + zCP sinJ* oljl* , 

(2.1) 

1 ~( * . *) i:l . 1 - COSJ* 0 1 a) 
K3 = T \ cot" + zcp acp* - Z sinJ* W - sinJ. i:lljl* 

The matrix elements T4p(g) of the representations 
are solutions of the eigenvalue equations 

[J2 - j(j + 1)]T~(g) = 0, [K2 - k(k + 1)]T4p(g) = 0. 
(2.2) 

By taking into account Eqs. (1. 9) and (2.1),these equa
tions can be written 

[tan2 ~..E..:. + !. tan ~ (3 + tan2 ~)...£.. + i 
2 0,,2 2 2 2 oJ cos2("'/2) 

( 
i:l 0 ) 0 1 (0 2 i:l 2 i:l 2 ) 

x ocp + i:lljl oJ. - sin2J ocp2 + aljl2 - 2 cos'" i:lcpi:lljl 

+ i (...£-. +...£-.) - j(j + 1)J Tj (g) = 0, 
4 sin("/2) cos 3(J/2) 0 cp oljl QP ( ) 

2.3 

ftan2 ,,* L + !. tan ,,* (3 + tan2 J*) _i:l_ 
L 2 oJ*2 2 2 2 0"'* 

i (i:l o)i:l 1 
cos 2(J* /2) ocp* + oljl* oJ* - sin2J* 

x ;;-::.;; + -- - 2 COSJ* --- - ---:--:--"----:--:--~ a2 02 a2 ) i 
ocp 2 oljl*2 o cp*o ljI* 4 sin(J*/2) cos3(J*i2) 

x(~ + -;') - k(k + 1)J T4p(g) = O. (2.4) 
\acp aljl 

In accordance with Eqs. (1. 8), (1.13), the variables 
separate as follows: 

T~(g) = e-i(Q'f'+Q*'f'*+P"+P*"*) d4p(J,J*). (2.5) 

Substituting this into (2.3) and (2.4),we get 

~tan2 -t. £ + [ Q + P +!.. tan -t. (3 + tan2 ~\J .l.. I 2 oJ2 cos 2(J/2) 2 2 2! oJ 

+ Q2 + p2 - 2QP cosJ + Q + P _ j(j + 1) t 
sin2J 4 sin(J/2) cos3 (J/2) \ 
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(2.6) 

Itan2 J* ~ + [_ Q* + P* + !'tan J* (3 + tan2 J*)~ _0_ 
1 2 oJ* 2 cos 2J*/2 2 2 2 ~ oJ* 

+ Q*2 + p*2 - 2Q* p* cOSJ* _ Q* + p* 

sin2J* 4 sin(J* /2) cos 3(J* /2) 

- k(k + 1) f d4p(J, ,,*) = O. (2.7) 

If we now introduce the function I(J,J*) by 

d~(J,J*) = e (Q +P)co t(J/2)-(Q*+P*) co t(J */2) 

x 1/[sin(J/2) sin(J*/2)]I(J,J*) (2.8) 

and the new variables 

t = 2.,jQ.,fP/sin(J/2), t* = 2.JQ*jp*/sin(J*/2) 

(-1T<argP,Q,F*,Q*<1T), (2.9) 

then (2.6) and (2.7) reduce to the equations 

d 2
[ +!. d[ _ [1 + (2j + 1)2J [= 0 

dt 2 t dt t 2 ' 

d 2
[ +.!. d[ _ f1 + (2k + 1)2J I = 0 

dt*2 t* dt* L t*2 

(2.10) 

(2.11) 

both of which are known to be differential equations for 
the Bessel function of imaginary argument. Two linearly 
independent solutions of (2.10) are [2j+l(t) and L 2j-l (t), 
where Iv(t) is defined by the series24 

~ (t/2)v+2m 
Iv(t) = LJ • 

m=omlr(m + 1/ + 1) 
(2.12) 

Equation (2.10) has singular points at t = 0 and t = IX) 

and accordingly the cut will be directed along the nega
tive imaginary faxis while the phase will be fixed by 
- 1T/2 < argt < 31T/2. In a Similar way, the solutions of 
(2.11) can be written in the form [21l+l(t*) and L 2k - l (f*). 
Here, it is convenient to cut the t* plane along the posi
tive imaginary axis and use the convention argf* = 
- argt. 

It is well known that if 2j + 1 takes integer values, the 
above solutions fail to remain linearly independent. We 
shall return to this singular case later on. 

Taking into account that differentiation with respect 
to a complex variable does not act on a function of the 
complex conjugate variable, we see that the general 
solution of (2.10) and (2.11) assumes the form 

[("',J*) = clI2j+l(t)I2k+l(t*) + C2L2j-l(t)L2k-l(t*) 

+ c3I 2j+l (t)L 2k -l (f*) + c4I_ 2j- l (f)I2k+l (t*). (2.13) 

It is worth noting that the two eigenvalue equations of 
Casimir operators of the SL(2, C) group are, generally 
speaking, intimately linked, and in reality the representa
tions satisfy a rather complicated fourth-order differen
tial equation. 5 In the present case, however, due to the 
favorable parametrization and basis, the differential 
equations in question decouple into two formally inde
pendent equations. It is this fact which enabled us to 
construct four linearly independent solutions of (2.3) and 
(2.4) by means of two linearly independent solutions of 
a second-order equation. 

The constants cl ' c2' c3' c 4 should be determined from 
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the regularity requirements imposed on solutions at the 
singular points sin(J.j2) = 00 (t = 0) and sin(J.j2) = 0 
(t = 00). The series (2.12) provides the behavior of the 
d4p functions at t = O. By requiring finiteness of the 
representation X = (j, k) as well as of the equivalent 
representation - X = (- j - 1, - k - 1), we arrive at the 
conditions c3 = 0, c4 = O. 

Restrictions on the remaining two constants are ob
tained from the behavior at t = 00. To this end we use 
the following asymptotic form of the Iy(t) functions24 : 

Iv(t) ~ (1/.J21Tt)(e t + ie- t+iwY), 
Itl~oo 

I y(t*) ~ (1/v'W)(et* - ie-t*-jIfY) 
Itl~oo 

(- rr/2 < argt < 3rr/2). 
(2.14) 

On substituting this into (2.13) we get two singular 
terms, which vanish if 

(2.15) 

These equations have a nontrivial solution only if 
sin(2rrjo) = 0 (Le., 2jo takes integer values). 

With an appropriate choice of normalizing factor and 
phase, the functions d&p take the form 

d J J J* - --
. 1 (p)j+l/2 (F*) k+l/2 

QP(, ) - 4 sin(2rrj) Q Q* 

e (Q+P)c 0 t ("/2) -(Q*+P*) c 0 t(,,*/2) 
x ~-----------------------

sin(J /2) sin(J */2) 

X [12j+l(t)I2k +1(t*) - L21-1(t)L2/.-1(t*)], (2.16) 

where 

t = 2..fQ..fP/sin(J/2). 

The final form of representations is obtained by re
calling (2.5), 

(2.17) 

and taking this with (2.16). The normalization assures 
fulfillment of the condition 

lim T~(g) = ll(Pl - Ql)ll(P2 - Q2)' 
g-+e 

(2.18) 

where e is the unit element of the group, e = (q;, J, l/J) = 
(0,0,0), and 

P = i(Pl + iP2), Q = HQ1 + iQ2)' 

If 2j + 1 takes integer values, the relation 12j+l (t) = 
L 2j-1 (t) holds and hence the bracket in (2. 16) containing 
I functions vanishes. As, however, the factor sin2rrj be
comes zero at the same points and in the same order, 
we do not have to worry about the linear dependence of 
solutions; the representation at these singular pOints 
should be understood as the limit when 2j + 1 is 
going to an integer number. 

Let us finally look briefly at some simple properties 
of representations. First the condition of unitarity, 

d4p(-J,-J*) =dtQ(J,J.*)*, 

can be inferred from (2.16) and (2.12). 

Further,representations X = (j,k) and - X = (- j -1, 
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To define the Bessel functions unambiguously, it was 
necessary to cut the t and t* planes and fix the arguments 
of the variables accordingly. However, it can be veri
fied that the discontinuity across the cut vanishes. Let 

t+ = Itle-l(1f/2-0), t! = Itle j (If/2-0), 

t - It le j (31f/2-0), t! = It I e- i (31f/2-0). 

Then, as a consequence of the quantization of jo, one 
gets 

Discd~(t,t*) = d4p(t.,t!) - d~(L,t!) 

= (1 - e
4

!fiJo.)d&J,.t+ ,m = O. 

Similar ly, the discontinuity produced by having to cut 
the P and Q planes likewise vanishes due to the quantiza
tion of jo' 

Finally, the representations obtained form a complete 
orthonormal set in the space of square integrable func
tions on the SL(2, C) group, where the Haar measure can 
be expressed in terms of the parameters given by (1.4) 
and (1. 5) as 

dg = sinJ sinJ.*dq;l dq;2dJ.l dJ. 2dl/J1 dl/J2' 

With this, the orthogonality relation reads 

J dg T4:p, (g)*T&p(g) 

64rr
4 

(') (pi ) = (2j + 1)(- 2k - 1) lljoJ o II (J - (J II 1 - P l 

x ll(Pa - P 2) ll(Qi. - Ql)ll(Qa - Q2)' 

The factor (2j + 1)(- 2k - 1) = j~ + (J2 on the right
hand side is the familiar Plancherel measure. 
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shows that at P = 0 integrations in Eq. (1.19) cannot be interchanged. 
If in the explicit form of TiQPf g) as given by Eq. (2.16) one still tries to 
take lim P -> 0 TiQP( g) it turns out to be nonexisting (an oscillating unde
termined expression). Due to the symmetry of the diQP functions a 
similar statement can be made on the limit Q -> 0 too. 

24H. Bateman, A. Erdelyi, Higher Transcendental Functions, Vol. 2 
(McGraw.Hill, New York, 1953). 
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It is shown that, in three dimensions, a gas of noninteracting bosons in the presence of purely 
repulsive impurity centers undergoes a "Bose-Einstein" phase transition at sufficiently low 
temperature. In the course of the proof it is also shown that, as the size of the system approaches 
infinity, the lowest energy state approaches zero with probability one. 

1. INTRODUCTION 

In this paper we shall consider a gas of independent 
(Le., noninteracting) bosons. This system differs, how
ever,from that of free bosons by the presence of 'im
purities.' That is, it is assumed that each boson inter
acts with a set of fixed centers, whose distribution is 
given. It is further assumed that the interaction between 
the bosons and the impurities is purely repulsive and 
finite-ranged. Under these circumstances we shall show 
that in three dimensions the Einstein-Bose condensation 
phenomena occurs. 

Let the Hamiltonian h of the individual bosons be given 
by 

h = ho + U, 

where 

and U is the interaction with the impurities. 

Write 

(I. 1) 

(I. 2) 

(I. 3) 

As usual, the chemical potential J1. is determined by the 
equation 

1 
N = ~ n; =~ B(e.-W ' 

, 'e'-l 
(I. 4) 

where n! is the mean number of particles in the state i, 
N is the number of bosons present, and [3 == l/kT. By 
defining 

~ = eBIl (I. 5) 

the condition that N ~ 1'1; ~ 0 implies that 

e
Be

; >~. (1. 6) 

If the lowest energy level of h is € 0' the strongest form 
of this inequality is 

e&o > ~. 
Returning now to (1. 4), we may write 

-Be 
N = L; ~e ; 

; 1 - ~e-Be; 

by (1. 6) 

Let us define the 'partition function' Q{t) by 
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(I. 7) 

(1.8) 

(I. 9) 

Then (1. 8) becomes 
0() 

N = L; ~IQ{l(:3). (1. 10) 
/=1 

Let us now recall how the existence of the Bose
Einstein condensation phenomena is proved for free 
particles. For free particles (periodic boundary con
ditions) € 0 = O. Replacing the sum over states by an 
integral for large volume, 

Q{t) = Qo{t) -7 [V/{21T)3] J d3kexp{-1l 2k 2t/2ni} 

= V{21T1l2t/m)-3/2. {I. 11) 

Therefore 

N = V (21T1l2(3) -3/2 ~ L 
\ m 1=1 z3/2 

Now define f3 0 by 

~21T1l2 f30~ -3/2 0() 1 
N=V L; -

m 1=1 P/2 

If f3 > f3 0' we have 

(
21T1i2f3)-3/2 00 /'1 (21T1i2[30) -3/2 0() _~I 

V-- L; ....L.<V-- L; 
m 1=1 l3/2 m 1 P/2 

= NL;~ {~I/l)3/2 

L;~ {l/l )312 

{I. 12) 

(I. 13) 

{I. 14) 

Since, by (I. 7), ~ < 1 and L;~ ~l /P/2 is a monotoni

cally increaSing function of ~,we have at once that 

V{21T 2(3)-3/2 't ~ < N 
\ m 1=1 P/2 

(I. 15) 

so that (1. 12) has no solution. Therefore a mistake has 
been made in deriving (1. 12). As is well known, the mis
take is the replacing of the sum over states by the in
tegral for any large t (i.e., very large l) in (1.11). That 
is, as soon as f3 gets the least bit larger than f3 0' the 
terms in {I. 10) for 1 very large contribute comparably 
to the small 1 terms. The small 1 terms may be thought 
of as the normal contribution, the very large 1 terms as 
the contribution of the "condensate." For the free-boson 
case it can in fact be shown rigorously that the "con
densate" is simply the macroscopic occupation of the 
lowest energy level. 

For the impure boson gas we shall show the following: 
If the Q(lf3) are evaluated in the large volume limit hold-

Copyright © 1973 by the American Institute of Physics 1626 
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ing 1 fixed, we again find that the resulting equation for 
~ has no solution for f3 sufficiently large. This means 
that for sufficiently large f3 there is a contribution to 
(1.10) from a normal part (1 of order unity) and a 
"condensate" (I very large). In other words a Bose
Einstein condensation takes place. However, the method 
of proof precludes the possibility of investigating the 
nature of the transition in detail. We have not shown, 
for example, that what happens physically is that a mac
roscopiC number of particles go into the lowest state 
below the transition temperature. (But we suspect that 
it is true.) 

The proof consists of two steps. In Sec. 2 we shall show 
that Q(t):s Qp(t). Then, for f3 > f3 0 ' ignoring the error 
for very large I, we have 

co 00 L)oo ~I 113/2 
L) ~IQ(lf3):S L) ~IQo(lf3) < N 1 (1.16) 
1=1 1=1 L)~ lll3/2 

In Sec. 3 we will prove that (with probability one) EO - O. 
Therefore, by (1. 7) ~ is again less than unity, and from 
(1.16) 

00 

L) ~IQ(lf3) < N, (1.17) 
1=1 

which contradicts (1.10). Therefore for f3 > 130 there is 
again a contribution from the "condensate" (very large 
1 terms). This establishes the existence of the Bose
Einstein condensation phenomena, but not its exact 
nature. We also mention that this tells us that the value 
of f3 at the condensation temperature is less for the im
pure system than for the free system, or that the transi
tion temperature is higher. 

2. THE INEQUALITY aft) ~ 0 0 (t) 

Consider 

Q(t, A) Tre -Hit/AU). 

We have at once from the definitions 

Q(t) = Q(t, 1), 

Qo(t) = Q(t, O}. 

Now clearly 

oQ(t, A) _ t Tr[e -t<Po+AU) U] 
OA 

- tQ(t, A)U A' 

where 

U A == Tr(e -t<Po+AU
) U) ITr(e-t(ko+AU». 

Integrating (2.4), we obtain 

Q(t, A) Q(t,O) exp(- t foA dA'UA.). 

PUtting A = 1, we have 
1 

Q(t) = Qo(t) exp(- t fo dAUA). 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Now if U is a nonnegative operator, its expectation value 
with respect to any density matrix must be nonnegative. 
From (2. 5) we see that U A is just such an expectation 
value. Therefore, for U nonnegative 

and from (2. 7) 

Q(t):s Q oCt). 
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If we apply this result to the case where U is a purely 
repulsive (positive) potential representing the interac
tion of the bosons with impurities, we have the desired 
result. 

3. PROOF THAT eo = 0 WITH PROBABILITY ONE 

We first assume that we have v impurity centers dis
tributed at random in our container of volume V. We 
take this container to be a cube of edge L, V L3. 
Imagine the container divided into M = m 3 smaller 
cubes (cells), each of edge LIM. Label the smaller 
cubes by an index s = 1,2, ... , M. Call P(n1, n2, ••• ,nM) 
the probability that there are n 1 impurity centers in cell 
1, n 2 impurity centers in cell 2, and so forth. Clearly 
this is given by 

P(n1,n2, ••• ) = v! (1.\ nl(1.)n2 ... (1.\n M, 
n 1 !n 2 !· •• n M ! MJ M MJ 

since for a random distribution the probability of a 
center being in a small cell is 11M. Since 

(3.1) may be written 

(3.1) 

(3.2) 

(3.3) 

Let P be the total probability that every small cell have 
an occupancy of at least one center; then 

(3.4) 

This summation may be carried out in the usual fashion: 

= x.. j dcf> e-iv</J L) (ei</J)n_ !21T (00 1) M 

21T 0 n=1 nl 

I j
.21T x.. 0 dcf> e-iv</J[exp(e i ¢) _1]M 

21T 

v! j ~ (ez _1)M 
21Ti unit circle Z v,+1 

.!!:.. v (e z -1)M 1.=0 = ~ (_I)IM! (M -l)V. 
dz 1=0 II (M - l)l (3.5) 

Therefore 

M v 
P=L) (-I)IM! ( l) 

1=0 1 I(M _ l) I 1 - M (3.6) 

We are interested in evaluating this for the case of a 
very large system (II »1), where the "small" cells are 
chosen to be very large but much smaller than the size 
of the entire system, i.e., 

1« M« I). (3.7) 

It is clear that, under these circumstances, as 1 in
creases the factor (1 - llM)1I dec;reases more rapidly 
than any other factor can increase, and the main contri
bution comes from small liM. For small liM we may 
approximate 

(1 _ IIM)lJ = e-lJl/M 
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so that (3.6) becomes 
M 

P ~=" (-)IM! /. I LJ --'......!--- (e- v M) I = (1 _ e- V M)M 
1=0 l!(M-l)! 

(3.8) 

P ~ exp(- Me-viM). (3.9) 

Now suppose we choose 

M = v/(logv)1/2. (3.10) 

Then 

Me-viM = [v/(log v)1/2]e-(1og v) 112, 

which approaches (i) as v approaches (i). Therefore for a 
"small" cell size determined by (3.10), the probability 
of every "small" cell being occupied goes to zero as the 
size of the system approaches (i). That is, with probability 
one, at least one small cell is empty. Now the small cells 
are cubes of edge a = L/Ml/3. Using (3.10), we have 

a = [1/p l/3](logv)1/6, (3.11) 

where 

p == v/V, (3.12) 

the density of impurities. Therefore the "small" cells 
get infinitely large as the size of the system approaches 
infinity. 

Now consider a small cell which is free of impurity 
centers. Since we have assumed that the range of the 
potential is finite, this means that there is, with proba
bility one, a region R (say a cube of edge a') which goes 
to (i) as the system size goes to (i) in which the impurity 
potential is zero. Let us take as a normalized trial wave 
function 1/1 (place the origin at one corner of cube R) 

1/1 =(a~r/2 sin(;,x) Sin~;,y) sm(;,z) inR (3.13) 

= 0 otherwise. 

The Rayleigh-Ritz variational principle tells us that 

EO:S Iv dr I/Ihl/l 

= + ~: IR dr Ie:) 2 + (::) 2 + (::) 21 

= + 31t
2 ( 1T) 2. 

2m a' 
(3.14) 

Since a' approaches infinity as the size of the system 
approaches infinity, we have the result that, with proba
bility one, an upper bound for EO approaches zero. On 
the other hand, the nonnegativity of h implies that 

(3.15) 

so that as the size of the system approaches (i) we have, 
with probability one, that EO approaches zero. 
If the impurity centers are not distributed at random, 
we may proceed as follows. Call P(Rl,R2, •.. R v ) 

dRL dR2 • •• dRv the probability that the first impurity 
center is in dRl around Rl' the second in dR2 around R2, 
and so forth. Again, divide V into M equals "cells" of 
volume n: 

n =V/M 
(3.16) 

such that (3.7) is satisfied. Now call q the probability 
that there is no impurity center in one of these cells. 
Then 1 - q is the probability that there is at least one 
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center in the cell. Clearly, because of (3. 7) the proba
bility that there is at least one center in two of the cells 
is (1 - q)2, since the constraint that at least one center 
is in one cell is negligible. Continuing in this fashion, 
we obtain for P (the probability that at least one center 
is in each cell) 

P=(l_q)M. (3.17) 

It remains to calculate q. This is given by 

q = IV-R dRl '" dRvP(R l ,· .. ,R,). (3.18) 

Define the i-center distribution function by 

v! 
nl(Rl' ... ,R l) =-,--':"""'-

(v - i)! 

x Iv dRl+ l dRl+ 2 " 'dRvP(Rl' R2 ,'" ,R,,), (3.19) 

then one has at once 2 

q = 1-1.. J.... dRlnl(Rl ) 
11 .. 

+ 1.. I dRl dR2n 2 (Rl'R 2 ) + .... (3.20) 
2! 11 

In terms the correlation junctions Xl defined by 

n l (Rl ) = Xl (Rl ) , 

n 2(Rl'R2) = X2(Rl' R2) + Xl (Rl)Xl (R2) , 

n 3 (Rl' R2, R 3 ) = X2(Rl' R2, R 3 ) + Xl (Rl )X2(R2, R3 ) 

+ Xl(R2)X2(R2,R3 ) + Xl(R3 )X2(Rl ,R2) 

+ Xl (Rl)Xl (R2)Xl (R3 ) 

and so forth; (3.20) becomes 

(3.21) 

(3.22) 

When n is large (larger than any characteristic length in 
the probability distribution function of the centers), the 
factor in the exponent is proportional to n for a homo
geneous system. For independent centers Xl = p, 
Xl = 0 (l ~ 2) and q = exp(- pm which at once yields 
(3.8). If Pf/ll' ... ,R N) is given by a thermal equilibrium 
distribution then, under suitable conditions,l the bracket 
is just - (3pfl, wherep is the thermodynamic pressure of 
the gas of impurity centers. Writing for the bracket 
- pyfl, where y is a dimensionless number independent 
of n,we have 

P = (1 - e-yvlM)M = exp(- Me-yvlM)M.: 

(3.23) 

(3.24) 

This is identical with (3.9) except for the factor y, and 
consequently all the reasoning which follows (3.9) still 
holds. Therefore, we conclude that EO ~ 0 with probability 
one as the size of the system goes to (i) as long as the 
correlation function series in (3. 22) converges. 

·Supported in part by AFOSR, Grant 722187. 
tSupported in part by the National Science Foundation. 
IA more precise discussion may be found in W. Feller, Probability 

Theory and Its Applications (Wiley, New York, 1950), Vol. I, pp. 69ft'. 
'The discussion that follows is very closely patterned after a similar but 

more carefully stated analysis by the authors in a paper "A New 
Formula for the Pressure in Statistical Mechanics" (to be published). 
We are using, of course, the inclusion-exclusion lemma of probability 
theory. 



                                                                                                                                    

Kinetic theory of a weakly coupled and weakly 
inhomogeneous plasma in a magnetic field 

Jacqueline Naze Th!ftta and Alf H. 0ien 

Department of Applied Mathematics, University of Bergen, Bergen, Norway 
(Received 22 December 1972; revised manuscript received 13 March 1973) 

A study of the evolution toward continuum of a weakly coupled, weakly inhomogeneous 
two-component electron-ion plasma in an external electromagnetic field using the multiple-time-scale 
method is presented. An electron-ion mass ratio parameter and a weak inhomogeneity parameter are 
introduced. Kinetic and macroscopic equations for a certain ordering between these parameters are 
obtained. The equations are solved when using simplified collision terms. 

I. INTRODUCTION 

We study the evolution toward continuum of weakly 
coupled, weakly inhomogeneous two-component electron
ion plasma in an electromagnetic field using the multiple
time- scale method. An impetus to this examination has 
been the theory of Chap. 18 in the book of Chapman and 
Cowling.1 For us it seems that the underlying paramet
rization of the kinetic equations used there is a little 
arbitrary. The problem is connected with the separation 
of the two magnetic force terms in each of the kinetic 
equations and the underlying hypothesis when these two 
terms are taken to be of different order of magnitude. 
This can be understood when the ratio between the mag
nitude of the mass transport velocity and the thermal 
speed of each particle type is a small quantity. However, 
this ordering seems to be restricted to only these two 
terms in the equations. 

We have introduced various parameters in the kinetic 
equations in order to allow the two above-mentioned 
terms to be treated as of different orders of magnitude 
and at the same time make it possible to derive a set of 
macroscopic equations for the plasma model by use of 
the multiple-time-scale method. Similar derivations 
have been performed by McCune et al.2 for a one-com
ponent Boltzmann gas and by us3 for a one-component 
weakly coupled, weakly inhomogeneous gas without fields. 
It seems as if a similar derivation is possible for the 
two-component plasma model only if the square root of 
the mass ratio of electrons and ions is considered as a 
small parameter a and is related to the weak inhomo
genity parameter € '" c1 T20/L, where c 1 is the mean 
particle speed for electrons, T20 the effective time be
tween electron-electron collisions, and L a characteris
tic length for inhomogenities. If the square root mass 
ratio is not introduced, the procedure as far as we can 
see goes through only under very special conditions. 
However, we will not discuss this problem here. 

In Sec. II we define the plasma model to be studied 
and write down kinetic and macroscopic equations in 
parametrized form using the parameters € and a. In 
Sec. m we assume that € and a are of the same order 
of magnitude and solve the kinetic and macroscopic 
equations by the multiple-time- scale method up to 
second order in the smallness parameter. From the 
equations correct to zeroth and first orders we get that 

. distribution functions for electrons and ions to lowest 
order evolve toward functions of the same form as in 
Ref. 1 but at different times: Evolution of electrons takes 
place on T 20 time scale while evolution of ions takes 
place on the T21 '" T 20/a time scale. Small corrections 
to these distribution functions have transient behavior on 
the T 20 time scale, due to the electron evolution; so have 
the macroscopiC quantities. From the equations to se
cond order we obtain, together with transients on the T 20 
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and T 21 time scales due to electron and ion evolution, 
the macroscopic transport equations on the T22 '" T20/a 2 

time scale. This scale is also the time scale for energy 
transfer between electrons and ions. Our equations are 
Similar but not identical to the equations obtained in 
Ref. 1. In Sec. IV we solve the equations of Sec. III using 
instead of Fokker-Planck collision terms simple relaxa
tion terms in the kinetic equations. A picture of the evo
lution into equilibrium for our gas model is obtained. 

II. BASIC EQUATIONS AND ASSUMPTIONS 

We will study the evolution of a fully ionized two
component inhomogeneous electron-ion plasma placed 
in an external electromagnetic field. The notations of 
Ref. 1 are used throughout. Subscript 1 refers to elec
trons and 2 to ions. 

The gas is assumed to be weakly coupled,4-6 i.e., 

cpo/kTi « 1, i = 1,2_ 

Here T 1 and T 2 are temperatures for the gas compo
nents, CPo is a characteristic potential energy of two 
interacting particles, and r 0 is the range of this inter
action. Then interactions between particles give rise 
to Fokker-Planck (FP) collision terms in kinetic equa
tions. 

We also assume that the kinetic energies of electrons 
and ions are of equal order of magnitude so that 

~ mlc~ '" ~ m2c~. 
Thus 

c2 /C1 '" (mdm2)1/2 = a« 1. 

Havingn 1 '" n 2 and e1 ~ e 2 and assuming for the mean 
particle velocities 

for the mass transport vector co, we therefore have 

The peculiar velocities C1 and C2 are estimated as 

IC1 1 = IC1 - col'" c1' 
IC2 1= Ic2 -col'" ac1• 

Besides the parameter a we introduce the parameter 

E'" C1 T 20/L« 1, 

where T 20 is the effective time4 between electron
electron collisions and L is a characteristic length for 

Copyright © 1973 by the American Institute of Physics 1629 
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inhomogenities (assumed to be the same for electrons 
and ions). The external magnetic field is assumed to 
give rise to gyrofrequencies 01 and 02 such that 

T200 1 ~ 1 

(and T 200 2 ~ (
2). The particle accelerations, F i == 

e;lm; E due to the electric field E, are assumed to be 
so weak that T20lF111 IC11"" E (and T2o lF21/1c21 ~aE). 
Both Hand F i are assumed to be stationary and uniform. 
This last assumption may be avoided; see Appendix A. 

Starting from the BBGKY equations for this two-com
ponent gas model the follOwing kinetic equations for 
electrons and ions are derived by standard procedure: 4 - S 

(1) 

(2) 

Here t is a time variable on the T 20 time scale. +'j 
(C i - Cj ) are tensors and given by (Refs. 3-6 for a one
component gas) 

. . r 0 cp.. Joo 0 cp ij ( , ) +'J(v) = dx· ---.-!1. dT -- Xij = Xi' - VT • . 'J., 0 ., , J 
uX ij uX ij 

cP i' is the potential energy and Xij the relative coordinate 
of}two colliding particles "i" and" j". It is to be noted 
that 1+221 I 1+11 1"" lla. This is the reason why a and 
not a 2 appears in front of the ion-ion collision integral. 
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Note that the distribution functions fi are considered 
as functions of the peculiar velocities C. = c. - Co be
sides r and t. We must then be aware of the a priori 
condition 

(3) 

When deriving the parametrized moment equations, we 
assume that relative order of smallness of two averaged 
quantities are the same as for non average quantities, 
i.e., 

ImiC,Cil~miCi2 ~ m i ci
2, 

Iqi I Ini = I ! m iC i
2C. I ~ I m i C/C i I. 

Consequently, we also parametrize the a priori condition 
Eq. (3) in the following way: 

a f dC1f1m1C1 + f dC2 f 2m 2C 2 = O. (4) 

It can easily be shown that this parametrization of Eq. 
(3) is necessary in order to avoid a break down of the 
multiple time scale procedure when we consider evolu
tion from an initial state which lies far from equilibrium. 

USing Eq. (4) and the conservation properties of the 
collision integrals, we derive 

+ a2PecO x H + an 1 e 1C1 X H + a 2 n 2 e2C2 X H 

2 

+ Ea ~ PiFp 
i=l 

(5) 

(6) 

We also take into account the following moment equations 
for each gas component: 

OP1 0 o_ 
at + €a ar' (PICO) + E or • (P1C1) = 0, (8) 
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o 0 0 
at (P2 C2) + mco· or (P2C2) + mP2C2 or • Co 

o --
+ Ea - • (P2C 2C 2) - mP2F 2 

or 

(
oco oco) 2 + P2 - + Eaco• - - a n 2e 2cO x H 
at or 

- oco - a 2n 2e 2C2 x H + Eap2C2· -
or 

= _ a J dC
1 

dC
2

C)12 (C
1 

_ aC2 ) • (~ _a __ ~ _0_) 
m 2 oC2 m 1 oC1 

_0 + Eac ._0 
(
oc oc) 
ot 0 or 

III. SOLUTION OF KINETIC- AND MOMENT 
EQUATIONS BY THE MULTIPLE-TIME-SCALE 
METHOD 

We will now solve the set of kinetic and macroscopic 
equations by successive approximations. 

(11) 

(13) 

We have two parameters, a and E, which are both small 
but independent of each other. In order to solve the 
equations by a one-parameter successive approximations 
scheme, we have to assume some relation between a and 
E. In this work we study the model corresponding to 
E ~ a, E2 ~ E a ~ a 2 and so on. 

We assume that the distribution functions Ii (C;) can 
be found as 

00 
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Using the definitions of P and T, we have 
00 

P = 6 EPp(P), 
p=o 

where p(P) = 6;=1 J dC i /;'P) (C i ) m i and similarly for 
n,n1,n 2,P1,and P2' 

00 

nkT = 6 EP(nkT)(P), 
p=o 

where (nkT)(P) = t 6~=1 J dCJi(P) (C i Lm iCi
2 an~ 

similarly for T1 and T2 and also for P1C1 and P2C2' 

There is no such connection between expansions for 
pco and for Ii (C i). However, we seek Co as 

00 

Co = 6 EPCO(P). 
p=o 

Later we .shall delete all ( ) in the superscripts. 

In the collision integrals we expand the tensor 
C)12(C1 - aC 2 ) in a Taylor series which is assumed to 
be convergent in the distributional sense: 

C)12(C1 - aC2) = C)12(C1) - aC2 • _0_ C)12(C1) 
oC1 

+ a
2 ic2c 2 : ~) C)12(C1) - .... 

2! \ oC~ 

Following the multiple-time- scale method,4-6 the time 
derivative is expanded as 

in all the equations. Here t2i , i = 0,1,2, .. " is the 
time variable on the T2i ~ T20/Ei time scale. 

Substituting all these expansions in the equations and 
in the a priori condition, and collecting terms of equal 
order of magnitude, we derive for each order in the 
small parameter a set of equations which we next solve 
step by step. 

A. Zeroth-order equations 

(14) 

(15) 

Here 

FP
ll 

= ~ _0_ • J dC1C)1l(C1 - CJ.) • (~ _0_ - ~ ~), 
m1 oC1 \m1 aC1 m1 aC1 

Further,/~,po,p~,pg,cg, TO, T~, Tg,and cg show no 
time variation on the T 20 time scale, while 

a 0-0 0 -0 n~ J air -- (P1C1)-n1e1C1 x H=-- dC 1C)12(C 1)·_. 
at20 m 1 aC1 

(16) 
Consequently, on the T20 time scale only the distribution 
fUnction to zeroth order for the electrons evolves. The 
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collision side is the sum of two parts. The first takes 
account of the electron-electron collisions, the second 
expresses the effect to zeroth order of the collisions 
between heavy ions and electrons and has the effect of 
diffusing the electrons in velocity space. 

The evolution can be studied through the H~ function 

H~ = J dC1fE InfE. 

By standard procedure, using the properties of • ij3 , 

we find that due to the effect of the FPll term ff tends 
toward 

n~ (~)3/Z exp (_ ~ (C1 _ C~)Z\ 
21TkT~ 2kT~ J 

while the D1 term has the effect of making this isotropic 
in velocity space. Thus we obtain 

fE(C1> r, t zo ' tZ1> ••• ) ---7 fEM 

o ( m 1 03
/

2 (m1C~) =n1 -- exp --- as t20 ---700, 

27TkT~ 2kT~ 
(17) 

which is a t20 independent solution of Eq. (15). (For the 
electron distribution functions and' corresponding velo
city moments and later for functions describing ion 
evolution, subscript "M" will indicate these functions in 
the limits t 20 ---7 00, and t20 ---7 00, t21 ---7 00, respectively. 
However, the index is omitted when no confUSion is pos
sible). 

How fE evolves toward a Maxwellian distribution is 
an open question which can only be answered by solving 
Eq. (15). Su7 and McLeod and OngB have studied a re
lated equation using Landau's form for. 11 when H = 0. 

From Eqs. (14) and (17) we get 

C~ = 0, C£ ---7 ° as t 20 ---7 00. (18) 

This relaxation can be described by solving Eq. (16). 

B. First-order equations 

USing zeroth-order results, we get to first order in E 

Here 

FP2Z = - -- • J dC2.22(CZ - C2). - -- - - --, . 1 a (1 a 1 a) 
~a~ ~il~ ~il~ 
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Further, integrating the macroscopic equations to first 
order and eliminating all secularities on the 7 zo time 
scale show that po,P~,Pg, cg, TO, T~, and Tg have no 
variation on the 721 time scale but may vary on the T 22 

time scale,p1,p~ and c~" (where" means the compo
nent parallel to the magnetic field) and T~ have no varia
tion on the T 20 time scale, but may vary on the T21 time 
scale. However,pt, T1, Ti,Cb .... (where.L means the_ 
component perpendicular to the magnetic field) and ct 
all have a transient variation on the T 20 time scale be
cause of the variation of f~ (and its moments) on that 
scale before f& is established, for instance 

pHt20 , tZ1 ' ••• ) = Pt(t20 = 0, tz1 , ••• ) 

- ~ • J t20 dT p~C£(7). 
ilr 0 

From the ion kinetic equation, Eq. (21), we get 

ff = fi (tz 0 = 0, t z1 , ••• ) - tzo (ilf~ - FPZ2[J~ f ~]\ \atz1 IJ 

+ J 20 dT -L! C~(n x H. _z_ ---t (nOe ill 0 1 
o pO acz m

1
m 2 

x an . J dC1.1Z. aff ). 
aC 2 aC1 

The time integral may be assumed finite. We eliminate 
the secularity and get 

ilf~ [ 0 0] -- = FPZ2 f2f2 , 
(Jt21 

Ii = fi(tzo = 0, t21> ••• ) 

afg 1. t (n~e1 -+ -_. 0 20 dT --0- C~(T) X H 
aC2 p 

1 J' af10(C 1, T)) 
--- dC 1• 1Z • • 

m 1m 2 aC1 

(22) 

(23) 

Equation (22) is the kinetic equation for the ion distribu
tion to zeroth order on the 721 time scale. Using a H 
theorem and also the a priori condition to zeroth order, 
Eq. (14), we see that 

as tZ1 ---7 00. 

(24) 

In this evolution the density ng and temperature Tg are 
stationary. 

From Eq. (23) we derive 

pgc~(tzo, ••• ) = J dCzfimzcz 

= J dC21i(tZO = 0, t21 ,· .. )mzCz 

- pg J 20 dT ~ C~(7) X H t (noe 
o pO 

__ 1_ J dC
1
.1Z(C

1
). aff(C1, 7)). 

m 1m 2 aC1 

Now, the a priori condition Eq. (19) together with Eq. (16) 
give 

J dC1ff(t20 = 0, t21 ,'" )m 1C 1 

+ J dC2fi(tzo = 0, t21> ••• ) m 2C Z = ° 
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and, since P~C~(t20) --) ° when t20 --) <Xl, we have 

PYC~(t20 = 0, t21 , ••• ) = - PgC~(t20 = 0, t21' ••• ) 

= - 10
00 

dT (n~e;C~(T) x H 

_ ng 1 dC
1
+12 (C1) " aJf(cl' 7»). 

m 1 aC1 

Thus 

0-1 0 100 (n~e1 -0 P2C2 (t20 , ••• ) = P2 d7 -- C1 (7) X H 
t 20 pO 

__ 1_ 1 dC
1
+12(C

1
) " a/f(c1 , ~). (25) 

m 1m 2 aC1 

Ii itself therefore has the following form: 

Ji(t 20, t 21 , ••• ) = 1;(t21' .•• ) 

- _2 "j dT -..!.....! C~(7) X H a/o 
00 (nOe 

aC2 t20 pO 

__ 1_ 1 dC1~12(C1) " af:E(cl' 7»), 
m 1m 2 aC1 

(26) 

where 1i (t 21' ••• ) obeys the condition 

(27) 

To solve the electron kinetic equation (20) in the limit 
t20 --) <Xl we assume that aJl1at20 --) ° when t 20 --) <Xl 

(see Appendix B). Assuming further that lim as t20 --) <Xl 

commutes with differential and integral operations and 
using the properties of ~; j and Eq. (17) and the fact that 
p~ and T~ are independent of t20 and t21' we get the fol
lOwing linear integro-differential equation for JIM: 

FPllUfM(C1)JIM (Cl) + 11M (C 1 )/fM (Cl)] 
e1 a/fM [1] - - C1 X H" -- + D1 J1M 
m 1 aC1 

a/O a/O e aJO = C1 " ~ + F 1" ~ + -1. c8 x H" ~ 
ar aC1 m 1 aC1 

When we use the explicit expression for IfM and set 
JIM = IfM~I, this equation can be written as 

This is similar to the electron kinetic equation used by 
Robinson and Bernstein.9 

A solution of Eq. (28) can now be sought in the form 

1 1 11 2 ( ) 1 aT~ 
~1=a1+Y1-m1C1TA1C1,H"- --

2 T~ ar 

+ D1(Cl'H) " - F1 + Co x H - - - InP1 (29) (
m1 0 kT~ a 0) 
e1 e 1 ar 
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as in Ref. I. The constants al and yl are chosen equal 
to zero,l,2 so that 

1 dC 1 /1M = nlM = 0, 

J dCdfM!.-m1Cr -~(n1kT1n, = 0. 
2 2 

(30) 

(31) 

This implies that we choose properly the a priori unde
termined initial functions ni(t20 = 0, t2l , ••• ) and TI 
(t20 = 0, t 21 , ••• ) which show up in the expressions for 
nl and TI. 
C. Second-order equations 

This set of equations are integrated on the 7 20 as well 
as on the 721 time scale, and secular terms in each 
corresponding variable are eliminated. Hence, as non
secularity conditions when integrating the mass-conser
vation equations, we obtain, besides the transient terms, 
the following continuity equations: 

apO a 
- + - " (p Oc8) = 0, 
at22 or 

(32) 

(33) 

(34) 

As nonsecularity conditions for the mass transport equa
tion we obtain 

cli(t20 , t 21 , ••• ) ::::: cMt20 = 0, t21 = 0, t22 , •.• ) 

+ n~e1 10t20 d7 C~(T) X H 
pO 

1 t21 1 a [0 0 __ 0 
+ 0 dil. pO ar" 1P2 - n2m 2 " C2 C 2 (iI.)] 

pO (
ac8 + c8 " oc8) 
ot22 or 

(36) 

2 op9 2 
_ ",_, 00 0 -1 '" 0 
--LI +PecOXH+n1e1C1MXH+ LlP;F i • 

i=l or ;=1 

(37) 
Equation (37) should be compared with the correspond
ing equation in Ref. 1. Equations (35) and (36) represent 
the two steps of relaxation on the 720 and T21 time 
scales due to electron and ion evolution, respectively, 
before the establishment of Eq. (37). 

In a similar way the equation for the total tempera
ture shows that T2 has a variation on the 7 20 time scale 
due to electron evolution, T1 has a variation on the 721 

time scale because of ion evolution, and 
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(38) 

The first four terms on the right-hand side of Eq. (38) 
are due to the electron evolution. This feature is also 
observed from the equations for the electron and ion 
temperatures. Corresponding to Eq. (38), we get 

( m1G!) exp ---
2kT~ 

(39) 

3 Ok (aT~ ° aTg) ° a ° n~n~ (m1)3/2 -n2 -- + Co -- = - P2 - • Co + -- -
2 at22 ar ar m 2 27Tk 

x (T~ - T~) J dC 1)12(C ): I exp (_ m 1 Gt). (40) 
TO 5/2 1 1 2kTo 

1 1 

Here we have rewritten the electron-ion energy ex
change term in the limit when t20 , t21 both are infinite. 
When using Landau'S form for the tensor 1)12,10.11 the 
energy exchange term takes the same form as in Ref. 11. 

When we solve the ion kinetic equation to this order 
we first find that fi has a transient on the T 20 time 
scale. Let us assume that af~ /a t22 tends toward 
af~M /at22 as t21 ~ 00. In that limit it is also plausible 
to assume that afi/ot21 tends toward zero (cf. the 
Appendix in Ref. 3). Comparison with the expression 
for of1(ot21 obtained from Eq. (26) then shows in turn 
that 012 /ot21 tends toward zero. The kinetic equation 
then reduces to 

of 2
0
M + cg. of~M + C

2
• Of~M + F2 • Of~M 

ot 22 ar or oC2 

_ ( aC8 + cg • aC8). of~M + ~ cg x H. of~M 
ot22 ar oC 2 m 2 oC2 

of~M • ac8 
- -- C 2·-

oC2 or 

= FP22[f~M (c2)iiM(C2) + nM (C2)f~M (C2)] 

1 of~M J 0 1 - -- -_. dC11)12(C1) • - f1M 
m 1m 2 oC2 aC1 
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Taking into account the explicit expression for f 20M, per
forming the various differentiations and substituting 
from Eqs. (33), (40) and the equation similar to Eq. (37) 
with pg on the left [obtainable from Eq. (11)], some 
straightforward calculations give 

where C2C2 is the traceless tensor C2C2 - % G~ I. It 
shows that when using for 1)12(C1) either Landau'S form 
or Balescu-Lenard's form,10 the velocity integral 
J dC11)12(C1 )ffM is proportional to the unit tensor. 
Since C'2C2: I = 0, the kinetic equation further Simplifies 
to 

FP22[f~M(C2)11M(C2) + f20M(C~)1iM(C2)] 

=f~MC2°(::~: -i):g :~g 
m 2 fO COC • ac8 +-- 2M 2 2 0 -. 

kTg or 
(42) 

This equation has to be solved for liM subject to the 
condition Eq. (27). The solution has the following form 1 : 

f- 1 - fO ( 1 + III 0 C + 1 1 C2 2M - 2M (l/2 t'2 m 2 2 Y2 2m 2 2 

+A·- __ 2+B :~ 1 o~ OCO
) 

2 T~ or 2 or' 
(43) 

where A2 = C2(12(C2), B2 = C2C2(P.,2(G2), and (l/~,p~, and 
Y~ are constant. p~ is determined by Eq. (27) while (l/~ 
and Y~ are chosen equal to zero,1.2, so that 

(44) 

(45) 

which implies that the a priori undetermined initial func
tions in n~ and T~ at t21 = 0 are properly chosen. 

D. Higher-order equations 

It can easily be shown that the electron kinetic equa
tion to second order in the limit t20 ~ 00 gives an 
integro-differential equation for frM of the same form 
as Eq. (28) for fIM , the operators in both equations being 
the same. To third order in € the ion kinetic equation in 
the limit t 20 ~ 00 and t21 ~ 00 reduces to an equation 
for fiM of the same form as Eq. (42) for fiM' The 
equation for fiM has to be solved subject to the a priori 
condition to second order, 

(46) 

This is possible since the general solution for fiM con
tains five arbitrary constants. Two of these can be 
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chosen equal to zero as in C. The remaining three are 
chosen to fulfil the a priori condition Eq. (46). 

In principle this procedure can be followed to even 
higher orders, the electron kinetic equations in the limit 
t20 ~ 00 and the ion kinetic equations in the limits 
t20 ~ 00 and t21 ~ 00 having the same operators as 
before. 

IV. SOME QUALITATIVE SOLUTIONS 

To obtain qualitative solutions of Eqs. (28) and (42), we 
use the relaxation terms 

in the electron and ion kinetic equations respectively 
instead of the Fokker-Planck and diffusion collision 
terms. Here VI is a measure of the electron-electron 
and electron-ion collision frequency and v2 is a mea
sure of the ion-ion collision frequency. They are both 
assumed velocity, time and space independent. In the 
limit t20 ~ 00 and in the limit t2l ~ 00 we then get 

1 0 [1 1/v1 
JIM = JIM VI C 111 + -1-+-(0-1-/-V1-)-2 

J~M[- C
2

" (m2C~ _~) ~ oT2 
\2kT2 2 T2 or 

m 2 0 "oc8] --C2 C2 " -. 
kT2 or 

(48) 

These expressions are of the same form as in Ref. 1. 

From the expression for JIM we find "tiM' We obtain, 
parallel and perpendicular to the magnetic field, 

Setting now a/or = 0, we substitute Eqs. (49) and (50) 
into Eqs. (37)-(40). The mass-transport equations 
parallel and perpendicular to the magnetic field then 
become 

a 0 2 
COli ~ 

P -- = L.J PiFill' 
ot22 i=l 
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Here 

n1e~ 1/v1 
0=-- > o. 

m 1 1 + (01/V1)2 

Equation (38) gives in the same way the following equa
tion for temperature: 

3 CJT n1e~ 1/v1 (ml F lJ. ~ 
- nk -- = -- e 1 + c8 x H 2 
2 CJt22 ml 1 + (Odvl)2 

As for a neutral gas the mass transport parallel to the 
magnetic field grows linearly with time. Equation (52) 
is a linear inhomogeneous equation for C8.L. A Simple 
calculation shows that the correspondinihomogeneous 
equation has solutions proportional to e .w± t, where w ± = 
TJ ± i I5H2/p • 

Here 

These solutions are damped away in a time of order 
p/I5H2, Le., on the 722 time scale. The steady state solu
tion of Eq. (52) can be found by setting the left-hand side 
of Eq. (52) equal to zero. 

Equation (53) shows that after a time of order p/I5H2 
the temperature grows linearly with time. Equations (39) 
and (40) when alar = 0 show how energy produced by 
forces is absorbed by electrons and via collisions partly 
released to ions provided that T 1 > T 2. 

Equation (47) for the homogeneous case shows how J-fM 
tends toward a steady value after a time of order p/I5H2. 

In absence of forces F i also, however, C8.L is damped 
away after a time of order p/I5H2, while T reaches a 
stationary value and JlM (t22 , ••• ) dies away; that is, a 
state of equilibrium is established. 
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APPENDIX A 

Taking into account also an electromagnetic field 
generated by the evolution of the plasma, we have to con
sider the kinetic and moment equations coupled with the 
Maxwell equations. Assuming almost charge neutrality 
an electric field E of the same order of magnitude as in 
Sec. IT may be generated as well as a weak magnetic 
field B. Appropriate zeroth- and first-order Maxwell 
equations may be written down and solved together with 
the equations of Sec. ID. It shows that the zeroth-order 
kinetic and moment equations are unaltered. From the 
first-order kinetic and moment equations and zeroth
order Maxwell equations we see new tranSients. New 
transients also appear at the next order of approxima
tion. However, in the limits t20 = 00 and t2l = 00, i.e., on 
the 722 time scale, the kinetic and moment equations are 
the same as in Sec. ID. The electric field obeys Poisson 
equation, the source of which varies on the 722 time 
scale. 

APPENDIX B 

The assumption that afNat20 ~ 0 as t20 ~ 00 in Eq. 
(20) can be made plausible in the same way as in the 
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Appendix of Ref. 3. By defining the operators 5',~, and 
~ by 

where FP l 11 is the linearized electron-electron Fokker
Planck operator, Eq. (20) can be written as 

0(/J1 
--= ~(/J1 + G1 , ot20 

where 

(/J1M is a t 2o -independent solution of 

(Bl) 

fO ~m = [c -~ + F __ 0_ + ~ c8 x H-_o-J~10 
1M T'1M 1 or 1 oC

1 
m

1 
oC

1 
M 

and G1 a quantity which tends toward zero as t20 ~ o(). 

5' is a symmetric negative operator on L2(fPM) space, 
while mt is antisymmetric. [(', .) and II II denote 
scalar product and norm in this space.] It follows that 

J. Math. Phys., V~I. 14, No. 11, November 1973 

1636 

($P1' (/J1) equals zero if and only if (5'(/Jv (/Jl) equals 
zero, i.e., (/J1 = Cl! + 'YC~, where Cl! and'Y are C1 indepen
dent. Since ~ is an infinitesimal rotation operator, it 
can be shown as in Ref.l2 that 5'mt = mt5', so that (5'(/Jl' 
~(/J1) = O. It follows then from Eq. (Bl) that 

and the proof is completed in the same way as in Ref. 3. 
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A coupled channel T operator formalism is applied to the problem of e-H collisions. Due to the 
electron-electron repulsion interaction, coupled integral equations for the direct and exchange 
amplitude density functions are obtained in contrast to the purely algebraic equations encountered in 
previous studies of model systems. These integral equations may be solved in a number of ways. One 
procedure involves the use of the Sams-Kouri homogeneous integral solution formalism to convert 
the integral equations into Volterra equations of the second kind. The kernals for these equations are 
such that a very rapid numerical solution may be obtained. Numerical results are presented for the 
special case of s -wave elastic scattering. 

I. INTRODUCTION 
In the years since the development of quantum mechani
cal scattering theory, there has been great interest in 
collisions in which identical particles are present.1 The 
simplest example of such a system is, of course, the e - H 
atom system.2 Because of the requirements of the Pauli 
exclusion principle, it is immediately necessary to treat 
rearrangements whenever one deals with scattering of 
systems containing identical Fermions.1a By far, the 
most widely studied procedure for such problems is the 
adaptation of the Hartree-Fock procedure to collisions. 2 

In addition, more direct applications of the variation 
principle to such collisions have resulted in very accur
ate values of phase shifts for the elastic scattering of 
electrons by H atoms at energies below threshold for 
excitation 2 Another procedure is generally discussed in 
various reference texts but has been applied in practice 
only in perturbation calculations (Le., the Born approxi
mation1(a)(b)(d» . 

This is the procedure based on computing the direct and 
exchange T matrix elements and then computing the 
singlet and triplet amplitudes by linear combinations of 
the exchange and direct amplitudes. If the variational 
and T matrix calculations both are done exactly, one 
should get identical results. However, approximate cal
culations based on the various different formalisms may 
be expected to lead to different results. In the present 
paper, we present a discussion and application of nonper
turbative scheme for computing the direct and exchange 
T matrices for e-H collisions. The procedure involves 
the use of coupled operator equations for the channel 
operators, and it has been previously used to study 
models for three body rearrangements. 3 In those studies, 
the interactions are such that the final equations which 
must be solved are purely algebraic equations. In con
trast, e-H scattering involves the electron-electron 
repulsion, and it is shown that this leads to somewhat 
different integral equations. However, it is still possible 
to obtain numerical solutions to the coupled integral 
equations by application of the homogeneous integral 
solution procedure of Sams and Kouri. 3 In order to 
illustrate the approach, numerical calculations are 
carried out for the s-wave component of elastic scatter
ing. Although the present application is restricted to 
energies below threshold for eXCitation, the formalism 
is general (if ionization processes are neglected). 
In Section II of this paper we present the formalism for 
the e-H system using channel operators. In Section III 
the specific case of s-wave elastic scattering is dealt 
with and numerical results given. 

II. COUPLED CHANNEL OPERATOR FORMALISM 
FOR e-H COLLISIONS 
The channel operators which are employed in this dis
cussion are given by la,c,3 
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T}' c< = Va + V y (E - H + iE )-1 V a (1 ) 

where a is an initial configuration channel index and 
'Y any possible final configuration channel index. For the 
e-H problem, T aa is the direct scattering operator and 
T B a is the exchange scattering operator. The interesting 
feature of these operators is that they permit one to 
treat the electrons as distinguishable during the com
putation and anti symmetrization is then performed after 
the calculation of the T matrix elements. If we there
fore label one electron as 1 and the other as 2, and 
assume electron 1 is initially bound and 2 is free, then 

Va =- 2jr2 + 2jr12 (2) 

and 
(3) 

Here we measure the energy in units of Rydbergs. Equa
tion (1) for T y a is not the most convenient form since the 
full Green's operator (E -H + iE)-1 cannot be known. 
We therefore introduce quantities W)')', such that 

(4) 

and employ the well known identity 1 

(E -H + it)-1 = (E - K y' + iE)-1[1 + Vy,(E-H + iE)-1]. 

It follows that Eq. (1) may be written as 
(5) 

Tya=Va +6VyWn,(E-Ky, + iE)-1 TY 'a' (6) 
y' 

Obviously there are infinitely many choices for the 
Wn" 

1. W y' = 6 yy' , where 6 yy' , is the usual Kronnecker 
delta lor 'Y, 'Y' • 

This choice leads to uncoupled channel operator equa
tions given by 

These equations are very attractive sin~e they enable 

(7) 

one to avoid difficulties associated with nonlocal 
"potentials" arising due to exchange. That is, one can 
specify the scattering coordinate in each channel separ
ately as that most suited to the particular final configura
tion channel. This equation has been employed by Sams 
and KourP to treat e-H collisions. However the results 
obtained do not agree at all with calculations using other 
formalisms. 2 Subsequently, the present authors have 
applied these equations to an analytically soluable model 
for a three body rearrangement and found the results in 
complete disagreement with the well-known correct 
results. 4 Essentially, the continuum contributions to the 
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Green's operator (E - K + i£)-1 playa fundamental 
role in these uncoupled channel operator equations so 
that incorrect results are obtained if these contributions 
are ignored or approximated by a quadrature scheme. 
Since in the present study we have chosen to neglect the 
continuum contributions associated with these Green's 
operators, we have not utilized this choice for W ,. 

n 
2. Wy ,== (1 - 6 yy ,)/(N - 1) where N is the number of 
channels. For example in the present two channel 
problem (neglecting ionization channels) we have 

(8) 

Combining Eqs. (6) and (8), we obtain the coupled channel 
operator equations 

T "'''' == V'" + V'" (E - Ka + i£)-IT8 ", 

Ta", == V", + V8(E -K", + i£)-IT",,,,. 

In our previous study of the soluable model for three 
body rearrangements, these equations were found to 

(9) 

yield correct results even though contributions from the 
continuum portions of the Green's operators were 
neglected. 4 This is probably the result of the direct 
coupling between the channels so that the effect of flux 
entering the 0 channel is directly reflected on the flux 
entering the f3 channel. In the case of Eq. (7), the informa
tion about flux in other channels enters solely through 
the continuum portion of (E - K + i£)-I. Consequently, 
it was decided to base our calculations for e-H scatter
ing on the coupled channel operator equations given by 
Eq. (9). 

In order to develop the equations which are used in 
actual calculations, it is convenient to introduce the so
called "total amplitude density" functions 
\y",(Jinlll2irl,r2) defined by5 

(10) 

Here cp(nJl1l2 i r l' r 2) is an initial state wave function in 
the coupled angular momentum representation. Thus,n 
is the bound electron principle quantum number, J is the 
total angular momentum quantum number, 11 is the bound 
electron orbital angular momentum quantum number and 
12 is the relative orbital angular momentum quantum 
number for the free electron. In this representation the 
total J non interacting Green's function G", (r l,r2Iri,r2) 
is given byl 

where j(l 1 knr) is the Ricatti-Bessel function and 
hl(121 knr~ is the Ricatti-Hankel function of the first 
kind,1 CPnl (r) is the radial portion of the bound electron 

1 
wave function and Y Jl I (1\, r 2) is the coupled angular 

1 2 
state where since the scattering is independent of the 
projection of total angular momentum along the Z axis, 
we suppress the dependence on a magnetic quantum 
number M). The wave number k .. for radial motion is 
given by 

k~ ==E + 1/n2 

where E is the total energy expressed in Rydbergs. 

Using Equations (8)-(11) we m::ry write 
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~ ",,,,(Ji nll121r l' r 2) 

== V'" (r 1> r 2 )cp(nJl112 1 r l' r 2) - iV", (r l' r 2) 

""" 1 I I j(l2ikn,rl<)hl(l2Ik",rl» x L.J L.J L.J - dr' dr' --:::..-...:.:....--"-__ -=---.:::..--=:c.-
"'Ii l~ k", 1 2 r 1 <r1 > 

XCPn'/I (r2)CPn'I' (r2) YJI'I' (1'2,1'1) 
1 1 1 2 

XY~I'I' (1'2,1'i)\B",(Jlnl 112 ir i,r2) 
1 2 

and 

\B ",(JI n11l21r l' r 2) == V'" (r l' r 2)cp(nJ11l2 Ir l' r 2) 

- iVB(r 1 ,r2 ) ~~~ ~ 
", I; l~ k", 

(13) 

X I dri I dr
2 

j (l21 k",r2 <)hl{l2i k",r2» CPn'l; (r l)cp"'I;(ril 
1T2 <r2 > 

X Y JI'I' (1' l' 1'2)Y~I'I' (1'i, 1'2)\ ",c.(Jlnl 1l2 i r i, r 2)· 
12 12 . (14) 

(Here explicit use is made of the well known fact that 
no coupling in J occurs). 

We now expand the functions \y a (J I n11l2 I r l' r 2) in the 
basis set cP n 11 (r ,)Y J IlIa (1' y' l' y') and also expand l/r 12 

in the usual multipole series so that 

\8a (Jlnll12lr 1,r2) == ~~~ CP"'I' (r2)Y Jl'l' (1'2'1' 1) 
,,' I{ I~ 1 1 2 

X \Ba(Jln'liZ2inl1l2Irl)/k"rl (16) 

and 

If we substitute Eqs. (15)-(17) into Eqs. (13)-(14) and 
multiply each by the proper functions CPnl Y Jl I and 

1 1 2 

integrate, we obtain 

\ ",a(JI ;\'I~lr2) == [J dr i i d1'2 YJl'Z' (1'I,1'2)CPn'l'(r1) 
1 2 1 

x V",(r1,r2 )Y.n I (1'I,1'2)CP"Z (r1)] j(l2Iknr2) 
1 2 1 

(17) 

- i ~ ~[I dr i i d1'2Y~I'I' (1'I,1'2)<P,,'I' (r 1)V ",(r1,r2) 
n" l{' knll 1 2 __ 1 

Iff r 1 

x YJI{'I~(r 11' 2) 1000 

drU(l21 k n"r 1 <)h1(l21 k""r 1» 

X \8",(Ji~"I;\lri>JCPn"I{'(r2) (18) 
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(19) 

where A represents the set of quantum numbers (nl, l2)' 
The angular integrals appearing in Eqs. (18) and (19) 
have been dealt with by Percival and Seaton6 in their 
discussion of the Hartree-Fock equations for e-H colli
sions and are shown to be 

[df 1 Jd1'2 Y j'1 I (f 1,f2 )P"(f1,f2 )YJI I (r 1,f2) 
. a b ' cd 

= (lalb J Ipy (f1'f'2) \lc1dJ ) 

( 1)/a+ l c-J 

= - c(laicyl OOO)C(lbldyl 000)[(21a + 1) 
(2y + 1) 

X (2lb + 1)(21c + 1)(21d + 1)]1/2W(lalblcld;Jy) (20) 

where C(ll'y \ 000) are Clebsch-Gordan coefficients and 
W(lalblcld;Jy) is the Racah W coefficient. We follow 
Percival and Seaton6 in defining 

f (1' l' l"l"'J) - (1' l'Jlp (1' '1' )ll"l"J) y 1 2' 1 '2' - 1 2 Y 1 2 1 2 , 
and 

g ( l'l' l"l"'J) - (-1)1{+1~(1' l'Jlp (f' .f' )ll"I"J) y 1 2' 1 2' - 1 2 r 1 2 2 1 

and we note that 

and 

It follows that we may write Eqs. (18)-(19) as 

~aa(JI A'I Alr2) = j(l21 knr2)[- 20 u ,jr2 

+ 2I;f l (li lz,11 12;J) 
I 

x Joo dr 1 Cf?,,' I,(r 1)(r~jr;+1 )Cf?" I (r 1)r~] o 

(21 ) 

(22) 

(23) 

(24) 

r2 2°1'1" 0/"l' 00 

- i I; -~""I,,(r2) - 1 2 1 2 J dr 1r 1Cf?,,'I,(r1 ) 
""Irk"" 1 r 2 0 1 

and 

lq 

X fO dri}(l21 k""r1J h1(12\ kn"r 1»~lIa(JI A" I AI rll o 
+ 2I;(- 1)1{+12g (l' l' l"l"'J) 

I I 1 2' 1 2' 

X J 00 dr 1r 1 Cf? n' I' (r 1)(r Vr ;+1) J drij(l21 k""r 1<) o 1 

x h1(l2Ikn"r1»~8a(J I A"IAlri)] (25) 
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These types of equations may be solved in several ways. 
One simple procedure is to recognize that aside from 
the inhomogeneity occurring in Eq. (25) for ~aa(JIA'IA\r2)' 
both ~ /l a and ~ aa decay exponentially to zero as r 1 and 
r 2' respectively, become large. Thus one may write 

~aa(J IA'I Alr2) 

= j(l2\ k"r2)[- 20 H ,jr2 + 2I;f l(li l2' 11l2;J) 
00 I 

X J drlCf?n'l'(r1)r~(r~jrl;I)Cf?nl (r l )] o 1 1 
Ma 

+ I; B a(A'IP)1J!p(r 2) 
p=1 

(27) 

where the 1J! p (r 1) belong to a basis set spanning the 
Hilbert space of square integrable functions. When Eqs. 
(27)-(28) are substituted into Eqs. (25)-(26), one obtains 
equations from which it is trivial to derive simultaneous 
algebraic equations for the numbers B a (A I p) and 
B/l(Alp). Thus, these equations can form the basis of 
close coupled calculations of the direct and exchange T 
matrix elements since they are given in terms of ~aa 
and ~/la by 

T~(A'I A) = Joo j (l' \ kn,r)~ aa(J \ A'I A \r)dr (29) o 

and 

T~X(A'IA) = Joo j(l'l k",r)!:6a(J I A'I A\r)dr. (30) o 

An alternative procedure which in some respects is 
Simpler is to uncouple the equations in the channel index 
by introducing the Singlet and triplet amplitude density 
expansion coefficients !:(±)(JIA'IAlr). These are defined 
by 

~(i)(JIA'IAlr) = ~aa(JIA'IA\r) ± ~8a(JIA'IAlr), (31) 

where the + yields the singlet and - yields the triplet. 
Since there is no spin-spin interaction, it follows that 
equations for ~(+)(JIA'\Alr) and !:(-)(JIA'\Alr) must 
uncouple from each other ,1(a) These equations are given 
by 

!:(±)(JIA'IAlr) =g(i)(JIA'IA\r) 'F iI;I;I; ~ Cf?,,"l',(r) 
ra" 11' l~ kn" 

x [-! ° 1'1,,° 1'1" t'O dr'r' Cf?n'I,(r') Joo dr"j(l2Ikn"r~) r 12 21 0 1 0 

x h1(121 kn"r~)~ (±) (JI A" \ A \ r") 

+ 2" (_1)1{+12g (l'l' l"l"'J) roo dr'r'm (rljrl+l) 
~ I I 2' I 2' Jo Yn'l{ < > 

J
O

OO 

dr" j(l2\ kn"r~)h1(l21 k""r~)!: (±)(J\ A"\A\r")] , 

where (32) 

g(i)(J\A'\Alr) ::::j(12\k"r) [-!OH' + 2I;fl(li.zz,~l2;J) 
r I 

x Jo

oo 
dr'Cf? n' If (r')(r~jr;+1 )Cf?nI

1 
(r')(r,)2] 

± rCf?,,1 (r)[- 20 1'l °1'1 Joo dr'Cf?n'I,(r')j(12Ik"r') 
1 12 210 1 
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+ 2L)(- 1)li+l~gl(lll2' lll2;J) 
I 

x fooo drfr'q>n'li(r')(r~jr;+l)j (l21 knr')] • (33) 

These equations are essentially of the form 

t(A'IAlr) = I(A'IAlr) 

+ L)Fl(A"lr)f
oo 
dr'F~(A'IA"lr')(rljrl+l) 

A" 0 < > 
I 

X foOO dr"g1(X" I r~) g2(X" Ir~)t(x" I xl r") (34) 

which we shall employ for convenience sake in discuss
ing the second solution procedure. It is convenient to 
introduce a matrix notation so Eq. (34) becomes . 

where comparison of Eqs. (34)-(35) makes the defini
tions of the matrices C, I, Fl , F~, gl and g2 are apparent. 

We now eliminate the lesser and greater variables to 
obtain 

C(r) = I(r) + L) [_l_f 1 (r). f r dr'F~(r')(r')I. (g2(r')' 
I rl+l 0 

X f rl 
dr" gl(r")' C(r") o 

1 r' 
X - • (g2(r')' f dr"g1(r")' C(r") + g/(r')' 

(r')l.l 0 

x f r7 dr" g2{r")' c(rll~. (36) 

This equation can now be written as 

C(r) = I(r) + L)[.!.. fl (r)· f r dr'f~(r/)(r')l. 
I r 1+1 0 

{ 

'1" 

X g2(r /)' fo dr" gl(r")' C(rN) - gl (r/) • 

x forldr"g2(r")·c(r") + gl(r/)' c} 
- rIFl(r)·fYdrIFI(r,)l • 

o 2 (r')l+l 

X {g2(r'), foY' dr"gl(r")' e(r") - g'(r')' 

'1" n 
x fo dr"g2(r") 'I;(r") + gl(r/)' C + rIFl(r)' o-U' 

where 
(37) 

c == fooo drg2(r) • C{r) (38) 

and 

0 1 = drFMr)-· g2(r)·f dr'g1(r')'C(r') f OO 1 { Y 

o rl+1 0 

+ g1(r)· f
r

oo 
dr' g2(r')' I;(r')}' (39) 

J. Math. Phys., Vol. 14, No. 11, November 1973 

1640 

This equation is now in a convenient form to apply the 
Sams-Kouri homogeneous integral solution procedure. 3 

The function I;(r) is thus written as 

ten) = C(O)(r) + I; (l)(r)' C + 'Et p)(r). 0 1 , 
I 

where 

C(O)(r) = I(r) + L)[.!.. Fl(r)·f
r dr'F~(r')(r')I. 

I rl+l 0 

yl 

X { g2(r') • 10 dr" gl(r") • C (0) (r") - g1(r /)' 

(40) 

and the equations for C (1) and C (2) are the same except 
that their inhomogenieties are respectively gl(r) and 
r IF1 (r). These equations are recognized as Volterra 
equations of the second kind and a convenient algorithm 
for their solution has been reported by Sams and Kouri. 3 

In the next section we report the results of numerical 
calculations for the purpose of illustrating the present 
approach. 

III. NUMERICAL RESULTS FOR s-WAVE ELASTIC 
SCATTERING 

The coupled channel operator formalism has been used 
in preliminary calculations of phase shifts for the s
wave singlet and triplet elastic scattering of an electron 
and hydrogen atom. Since we are directly interested only 
in the singlet and triplet phase shifts, it is convenient to 
employ the solution procedure based on the homogeneous 
integral solution method. Therefore, the direct and 
exchange amplitude densities are added and subtracted 
as discussed in the preceding section and the resulting 
equations are 

8i 00 t (±)(R) = g(x)(R) 'f - J dr(R - r) 
k R 

x exp(- r - R)[h(r)j'1' dr't (x)(r/)j(r ' ) (42) 
o 

+ j (r) f'1'oo dr't (:)(r')h(r')), 

g(±)(R) = 8[j (R) Joo dr(r - r 2jR) exp(- 2r) 
R 

± JoRdr(r-R)exp(-r-R)j(r)], (43) 

where j(R) is the s-wave regular Ricatti-Bessel function 
and heR) is the s-wave Ricatti-Hankel function of the 
first kind. We next interchange the order of integration 
in Eq. (42). Defining 

c(±) :;:: to dR exp(ikRlt(:)(R), 
o 

F c(R) = r dr sin(kr) exp(- r)(R - r), 
II. 

(44) 

(45) 
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Fr(R) = f" drexp(- r)(R - r) exp(ikr), 
o 

(47) 

QO R' 
a(±) = f dR't(±)(R')f dr sin[k(r-R')] exp(-r), (48) 
100 

"" Il' a~±) = f dR'~ (±)(R') f drr sin[k(r - R I)] exp(- r), 
o 0 (49) 

and 
R 

K(R ,R ') = ~, dr(R - r) exp(- r) sin[k(r - R ')], 

we have 

~ (±)(R) = g(±)(R) ± ~ C (±)F c(R) exp(- R) 
k 

± b~±)R exp(- R) ± b~±) exp(- R) 

This equation is then readily solved by writing 

(50) 

(51) 

(52) 

(53) 

~(±)(R):;: ~~)(R) ± C<.k) q±) (R) ± bi±)~~±)(R) ± b~±)t~±)(R) 

(54) 

where the ~ }±) (R) are easily seen to satisfy 

~~.k)(R) = g(±) (R) 'f! exp(- R) IR dR ' ~~±)(R ')K(R ,R/), 
k 0 (55) 

~~±)(R) :;: ~F c(R) exp(- R) 
k 

~~±)(R) == R exp(- R) 

'f! exp(- R) IR dR/~~±)(R/)K(R,R'), (57) 
k 0 

and 

~3(±)(R) == exp(- R) 'f! exp(- RlIIl dR't£±)(R/)K(R,R '). 
k 0 

The kernal K(R,R') has the very important property 

K(R,R):;: 0 

so that insertion of a quadrature approximation into 
Eqs. (55)-(58) leads to simple expressions3 for the 
functions q±\ i == 0,1,2,3 at the leading quadrature 
point R I • 

(58) 

(59) 

In Tables I and II the present results are summarized 
and compared with previous ones. Our results differ 
significantly from the Hartree-Fock results but agree 
quite nicely with those obtained by Schwartz2 in the 
low energy region. It is generally agreed that the num
bers derived by Schwartz are exact to all the reported 
figures. We note that our results are,in general, closer 
to these exact values than are the Hartree-Fock results 
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TABLE I. Singlet S-wave phase shifts for elastic scattering of elec
trons by hydrogen atoms. 7 

Energy Hartree- Massey- Present 
(Ryd) Fock MOiseiwitsch Schwartz Results 

0.01 2.396 2.484 2.553 2.541 
0.04 1. 871 2.003 2.067 2.039 
0.09 1.508 1. 649 1.696 1.746 
0.25 1.031 1. 250 1.202 1. 080 
0.36 0.869 1. 041 0.871 

TABLE II. Triplet S-wave phase shifts for elastic scattering of elec
trons by hydrogen atoms 7 

Energy Hartree- Massey- Present 
(Ryd) Fock Moiseiwitsch Schwartz Results 

0.01 2.908 2.909 2.939 2.935 
0.04 2.679 2.680 2.717 2.737 
0.09 2.461 2.447 2.500 2.564 
0.25 2.070 2 029 2.105 2.264 
0.36 1.901 1.909 1.933 2.170 

(this is true for the singlet S-wave results and, in the 
low energy region, the triplet S-wave results). 

It seems that although the approximations involved in 
the Hartree-Fock and present calculations are similar, 
Le., using only the "one state exchange approximation", 
the efficiency of treating the information available is 
higher in the present method. (At least this is the case 
in the low energy region where the approximation men
tioned is most valid). 

As to the comparison between the present results and 
those obtained by Schwartz it is very encouraging to 
see the present results come so close to those of 
Schwartz in the low energy region where they are ex
pected to be more reliable. Of course, the fact that the 
results agree less well as the energy increases has to 
do with the nature of the approximations involved in the 
present treatment. 

1. We used only the first term (the S term) in the expan
sion of 1jr 12 whereas Schwartz employs the whole func
tion. 

2. As mentioned already above we did only a "one state 
exchange approximation" so that the expansion basis 
was not augmented with any additional set of functions of 
any kind. On the other hand, Schwartz included in his 
calculations a large set of Hylleraas type basis functions. 

It is believed that, just as in other studies where re
arrangement collisions were treated,8 the addition of 
virtual states should improve the results significantly. 
Although the number of equations which must be inte
grated will then be increased, the studies of Sams and 
Kouri suggest that the present solution method can be 
readily employed. 3 
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The discrete version of the Marchenko equations in the 
inverse scattering problem* 
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For s-wave and one-dimensional scattering, the discrete Marchenko equations with respect to 
nontrivial comparison systems have been derived. A relation with the Gel'fand-Levitan equation is 
obtained. The continuum versions are obtained by a limiting process. 

I. INTRODUCTION 

The inverse scattering problem in its discrete form 
was introduced recently, 1 and applied to transport 
theory.2 The merit of this discrete approach is in the 
simplicity of mathematical derivations, while at each 
stage, one may pass to the continuum limit. 

In Refs. 1, 2, the problem was solved by the Gel'fand
Levitan approach where the kernel of the equation was 
given in terms of the spectral function p('\'), which is 
indeed the appropriate given data in the transport prob
lem. In scattering theory, on the other hand, the scatter
ing matrix 8(.\.) is given, and p(.\.) is obtained from S(A) 
by the Wiener-Hopf technique. In this respect, the 
Marchenko equation seems to be more suited for the 
scattering problem, since its kernel is expressed direct
ly in terms of 8(A).3 Furthermore, in the one-dimension
al case,4 there does not seem to be an obvious Gel'fand
Levitan equation. 

In this paper, we consider the discrete version of the 
Marchenko equation for the one-dimensional case and 
s-wave scattering. The formulation is slightly general
ized as follows: Given the solutions and the scattering 
datum, namely the phase shifts, positions, and normaliza
tions of bound states for a known system characterized 
by aO(n), and only the scattering datum for an unknown 
system a(n), the problem is to solve for the ratio 
a(n)/aO(n). In the continuum limit, this gives the differ
ence of the potentials,q(x) - qO(x). 

This generalization has been done for the one-dimen
sional Marchenko equations and for the Gel 'fand
Levitan equation in the continuum case. 5 However, to 
our knowledge, the generalization for the s-wave 
Marchenko equation has not appeared in the literature. 
The relation between the Marchenko solution and the 
Gel'fand-Levitan solution is obtained. Lastly, the Gon
tinuum limit is obtained. 

II. DISCRETE MARCHENKO EQUATION FOR S-WAVE 

The discrete radial Schrodinger equation isG 

a(n + l)l/I(>.,n + 1) + a(n)l/I(>',n - 1) == Al/I(>',n), (1) 

where a(n) and v(n), the "potential," are related by1 

a(n) == t exp[- t(v(n) + v(n -1)], (la) 

v(n) == A2q(nA), (lb) 

where A is the increment in spatial variable so that 
nA ~ x. The solutions of Eq. (1) are defined by their 
boundary conditions. Specifically, we are interested in 
the following sets: 

(i) cp(>.., n) defined by 

cp(A,O) = 0, cp(>.., 1) = 1. 
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(ii) CP± (A,n) defined by 

lim e±in6cp (A,n) = 1, 
n-+ 00 ± 

(3) 

where we define the following: 

>.. cost) == i(z + Z-l). (4) 

We assume that lim a(n) ~ i sufficiently fast. [In fact, 
,. ... 0() 

it is necessary and sufficient to assume that n:;12a(n) 
< 00.] It can be shown that 

cp(A,n) [2a(1)j(z - z-l )][cp_(>., O)cp .. (A,n) 

- cP+ (A, O)cp_(A,n)). (5) 

The phase shift 0(>.) is given by 

S(A) = e2 i6(X) = cp_(A, 0)/ <p+ (A, 0). (6) 

Let A j, i = 1, ... ,p, be the positions of the bound 
states, Le., where <P. (Ai' 0) vanish. It can be shown that 

(7) 

and 

co [d<P.(A,O») ~ I) <p(>'pn)<p(Aj,n) =oaja(1) </>.('\',1) 
,.;1 dA X=X i 

== 0 ij/Ny (8) 

We also have the completeness relation 

o(n, m) = [2a2(l)1T]-lj+1 dA [Sine cp(A,n)<p(A, m)/I CPT (A, 0) 121 
-1 

+ I) NN(>"i' n)cp(>"j' m) (9) 
i 

or, equivalently, 

o(n, m) = - (21Ti)-1 jl;az{(l-1/z2)<p(A, n)cp+(.\., m)/2a(1)<p.(A, 0) 

+ I)NN(Aj ,n)cp(A j , m). (9') 
i 

The symmetry relation, <p+(>',n) = <p~(A,n),has been 
used in arriving at Eq. (9'), and z is defined in Eq. (4). 

Let us suppose that the system described by the 
equation 

aDen + l)l/IO(A, n + 1) + aO(n )1/10(>., n - 1) = Al/IO(.\., n) 
(10) 

is completely known and distinguish all quantities rele
vant to this system by the superscript(O). Also, let us 
suppose that for an arbitrary system described by Eq. (1), 
we are given the phase shifts O(A), the position of the 
bound states Ai , and their normalizations Ny. The prob
lem is to find a(n). It is of practical advantage to use an 
arbitrary known system, Eq. (10), for comparison, in
stead of fixing Eq. (10) to the case aDen) = t. 

Copyright © 1973 by the American Institute of PhYSics 1643 
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The following representations for cf>(A,n) and cf>+ (A,n) 
can be rigorously justified: 

00 

cf>±(A,n) = :E A(n,m)cf>~(A,m), (11) 
m==n 

and 
n 

cf>(A,n) = :E K(n, m)cf>°(A, m). (12) 
m=O 

In Eqs. (11) and (12),A(n, m) and K(n, m) are independ
ent of X. 

Let us rewrite Eq.(l) for cf>+(>.,n): 

We note from Eq. (11) that 

~<j dz z-<n+1)cf>.(A,n) =A(n,n) <j dz. z -<n+1)cf>P(A,n). 
211t 211t (14) 

Multiplying Eq. (13) by 1/21112" and integrating over 
the unit circle, we get 

a(n)A(n -l,n -1)<j 2~ cf>~(>.,n - 1) 
11tZ n 

= A(n,n)<j ~cf>~(A,n). (15) 
211izn+1 

From a similar operation on the equation for cf>~(>.,n), 
we have 

a(n) = aO(n)A(n,n)jA(n -l,n - 1). (16) 

Next, let us evaluate the integral 

len, l) == (211i)-1 <j(dz/z )[2i sinO cf>(A, n)cf>~(A, l)jcf>+ (A, 0)]. 
(17) 

We first evaluate by residues at the poles. The resi
due at the bound state >'i is 

Ri(n,l) = 2a(1)N~cf>+(Ai>n)cf>~(Ai>I)/cf>~(>.,,1), (18) 

Nf being defined by Eq. (8). The residue at z = 0 iS7 
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IO(m, I) == <j(dz/211iz )[2i sinG cf>0(X, m)cf>~(A, 1)/ cf>P (X, O)} 

::::: 2aO(1){- oem, l) + :E [NiO)/ cf>?(A (9) ,1) J2 
J J 

x cf>P(A(~), m)cf>P(>'(~), I)} 

= 2a O(1)[- <j(dz/211iz)cf>~(A,m)cpP(A,l) 

+ <j(dz/211iz)SO(X)cf>~(>', m)cf>p(A, I)]. (21) 

Equation (21) gives us an expression for - cj(dz/211iz) 
4>~(A, m)4>p(X, l) which, when substituted into Eq. (20), 
gives us the following equations: 

00 

A(n, l) + :EA(n, m)w(m, 1) = 0 for I> n (22) 
m=n 

and 
00 1 

A(n,n) + :EA(n,m)w(m,n) =--, 
m=n A(n,n) 

(23) 

where 

w(m,1) :;:;: <j ~ ([SO(A) - S(>')]cf>P(A, m)4>p(X, I)} 
211tZ 

+ :E (N' ) 2 cf>~(Xi' m)cf>p(Aj, 1) 
i cf>+(Apl) 

- :E ( N(9)~ ) 2 cf>P(>.<9) , m)cf>~CA(Y', 1). 
i cf>P(A(~, 1) 

(24) 

Let us define 

a(n,l) == A(n, l)/A(n,n). (25) 

Then Eqs. (22) and (23) become 
00 

a(n,l) + wen, l) + L; a(n, m)w(m, 1) = 0, I > n, (26) 
m=,,+1 

1 :;:;: 1 + w(n,n) + ;; ( ) ( ) LJ an, m w m,n • 
A2(n,n) m=,,+1 

(27) 

Equation (26) defines a(n, l) for I > n, which in turn 
gives us A(n,n) through Eq. (27). a(n) is then obtained 
from Eq. (16), i.e., 

a(n) = aO(n)A(n,n)/A(n - 1,n - 1). (16) 

Equations (26) and (27) are the obvious analog of the 
Marchenko equation. For the case when the two systems ~ 0, I >n, 

Ro(n, I) = '} (19) differ only by the normalization of the ith bound state, 

~ - 2a(1 )/A(n, n), 1 = n. 

We are not interested in Ro(n, l) for 1 < n. 

l(n,1) can also be evaluated by substituting Eqs. (5) 
and (11) into the right-hand side of Eq. (17), and we 
obtain 

l(n,l) = 2a(1) - L;A(n, m)<j -.- cf>~(X, m)cf>~(A, I) 
( 

00 dz 

m=" 211lZ 

1 

:ERi(n,l), 

= ~o(n,l) + yR;(n,I), 

l> n, 

I =n. 

(20) 

From the completeness relation (9') for cf>0(A,n), and 
the expression for cf>0(>., n) corresponding to Eq. (5), we 
have 
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[Ndcf>+(>'pl)]2 - [N<?)/CP~(Ai,1)]2 = ANi' 

we obtain the following expression for A(n,n): 

A2(n,n) = 1 + [ANi cf>~(>'pn)cf>?(Apn)V 
00 

X[l + ANi :ECP~(A .. I)cf>~(Apl)]. (28) 
/=" 

This is the discrete analog of the expression obtained 
by Jost and Kohns for phase equivalent potentials. 

Let us conclude this section by deriving a relation 
between A(n, m) and K(n, m ) [whiCh is the inverse of. 
K(n, m) defined in Eq. (12), Le., 

n 
cf>0(A,n) = :E K(n, m)cp(>., m) ] • 

m=O 
(12 ') 

From the completeness relation (9), we easily obtain 

K(n, l) = (1/11) r1 
dA [sine cf>0(A,n)cf>(A, l)/2a2 (1) I cf>+ (A, 0) 12] 

-1 

+ :EN~cf>°().t,n)cf>(Ajll). (29) 
i 
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Substituting Eq. (5) for <P(A, I) in the integral, we obtain 

K(n,l) = i3A(l,m)f- 9 dzJ(1-z-2)<pO(A,n) 
m=l 21fZ 

<P9(A, m)j2a(1 )<P. (A, 0)] 

+ L, N~<pO(Apn)<p2(Ai ,m)j <P. (Ai> I)} 
i 
00 

== L,A(l, m)p(n, m). 
m=l 

(30) 

The contributions of poles at the bound states cancel 
in p(n, m). Hence,p(n, m) = 0 for m > n, and 

n 
K(n,l) = L, A(l, m)p(n, m). 

m=l 

In particular, when I = n, evaluating the residue at 
z = 0 in Eq. (30) gives 

(30') 

K(n,n) = [a O(1)<P9(z :;::: 0, O)ja(I)<p+(z = O,O)]A(n,n) 

= IjK(n,n). (31) 

In Eq. (31), we have used the identity 
00 

<P9(z = 0,0) II 2aO(l) = 1. 
1~1 

Thus, 

a(n)jaO(n) =A(n,n)jA{n - l,n - 1) 

= K(n - 1,n - l)jK(n,n), 

as is expected. 

III. DISCRETE ONE-DIMENSIONAL MARCHENKO 
EQUATIONS 

(32) 

(33) 

The basic equation for the one-dimensional case is 
still Eq. (1).9 The following three sets of solutions are 
separately complete with the inclusion of bound states: 

(i) 1fI 1 (X,n) and 1fI 2 (A,n) defined by 

lim 1/11 (x, n) ~ Sl1 (A)Zn, 1/12 (X, n) --t z-.. + S21 (A)Zn, 
n"'++oo 

n~l!l«> 1/Il(X,n) --t zn + S12(x)z-n, 1/12 (X,n) --t S22(x)z-n, 

SI;(A) is the scattering matrix. 

(ii) ! 1 (X, n) and Ii(A, n) defined by 

(iii) fa(A, n) and !~(A, n) defined by 

lim f2(A,n) --t z-n. 
n- -«> 

The S matrix is unitary, and "symmetric", Le., 

(34) 

(35) 

(36) 

ISll (A)12 + !S12(A)12 = IS22(A)!2 + IS21 (A)12:;::: 1, 

S11 (A)S~l (A) + S12(A)S~2(A) = 0 (37a) 

ahd 

(37b) 

Furthermore,S11 (X) and S22(X) are analytic in the 
unit circle Iz!:s 0, except for simple poles at the bound 
states Ai> i = 1, ... ,po Either S12(A) or S21(A) is suffi
cient to determine the whole S matrix. On the unit 
circle, the following relations are satisfied: 
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1/1 1 (X, n) = S11 (X)! 1 (A,n) = !~(X, n) + S12(X)! 2(X,n), (38) 

1/I2(X, n) = S22(X)! 2(A, n) = Ii(A, n) + S21 (X)! 1 (X, n). (39) 

At the bound states, X = xi' i = 1, ... ,P,! 1 (Xi' n) alld 
f 2 (x;,n) are proportional,Le., 

(40) 

Furthermore, the normalizations are given by 

L, n(X j ,n) = - Cjz j [.!£ (Sl1 (X»-l] == _1 -. 
n=-oo dz ;:="i N¥(z) 

= q i !~(xi>n) == (~) 2. 
n=-oo N 2 (z) 

(41) 

All these properties are in direct analogy to the 
continuum case,for which the readers are referred to 
the second" paper of Ref. 4. 

From the Green's function 

G(X; n, m) = - 21/11 (X,n)1/I2(X, m)jSn (xHz - Z-l), 

= - 21/11 (X, m)1/I2(X, n)jS11 (X)(z - Z-l), 

n 2: m, 

n 2: m, 
(42) 

we may derive the following completeness relations (see 
Appendix B): 

and 

l.. f1 ~A [1fI 1(A,n)1/I!(A,m) + 1/I2(X,n)1/I~(X,m)J 
21T -1 smO 

+ L,N~1/I(Xi ,n)1/I(X j , m) = o(n, m). (45) 
j 

The known system for comparison is again denoted by 
the superscript(O), and it has all the properties men
tioned previously. 

Again, one may justify the representations 

00 

!l(A,n) = L, A 1 (n,m)n(A,m), 
m=n 

n 

f 2(X,n):;::: L, A 2(n,m)n(A,m). 
m=-oo 

Similar to the S- wave case, one obtains 

a(n)jaO(n) = A1(n,n)jA1(n -1,n - 1) 

= A 2(n - 1, n - 1)jA2(n,n) 

In analogy to Eq. (30), A2 (n, I), defined by 
n 

n(x,n) = L, A2(n, m)fz(X,m), 
m=-oo 

is related to Al (n, m) by 
n 

A2(n,l) = 6 A 1 (l,m)Pt(n,m), 
m=l 

where 

(46) 

(47) 

(48) 

(49) 

(50) 
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For I = n, 

Furthermore, on evaluating the integral 

/l(n,l) = cj liz. n(~,n)S22(~)f22(~)f2(A,I) 
21TlZ 

by residues and through Eq. (39), in a manner similar to 
/(n, I) for s wave, we obtain the Marchenko equations for 
A 1 (n, m): 

(52) 

"" 
O!l(n,l) + 0l(n,l) + ~ 0!1(n,m)n1(m,l) = 0, 

m=-n+l 
I> n, 

(53) 
1 -2 "" 

= 1 + 0l(n,n) + ~ 0!1(n,m)n1(m,n), 
m=n+1 (54) 

where 

01 (m, I) == cj 4 n(~, m)n(~, I)(S21 (~) - S:P1(~)) 
21TZZ 

+ 2!~ (i)f~(~i' m)n(~i ,I) - 2!N!O) 2 (j)n(~J, m)n(~~, I). 
, J (55) 

A similar set of equations to Eqs. (52)-(55) can ob
viously be derived for f 2 (~, n). 

IV. CONTINUUM LIMIT 

Finally, let us consider the continuum limit of the 
results obtained. In close analogy to Ref. 1, in the con
tinuum limit, 

~~o, limn~~x, m~~xl' 1~~x2 
A-+O 

cosO = 1 - (.J2E~)2/2 = 1- (k~)2/2. 

The following limits are valid: 

lim ~~ ~ J dx, lim cj ~ ~_ ~ro dk 
A-+O A-+O 21Ti Z -00 21T' 

limz" ~ e ikx , 
A-+O 

-K·A 
limzj ~ e " 
A-+O 

w(m, I) ~ ~ [J oo 
dk [S(k) - SO(k)]<P2(k,x1)<P2(k,x2) 

-00 2 

+ ~ ( :JL i 
) 2 <P2(K; ,xl)<P~(Ki ,x2) 

i <P~(ki'0) 

_ ~ ( :JL? ) 2 <P2(K?'X1)<P~(KJ'X2)l 
j <P2'(K9, 0) J 

= ~0(xl,x2)' 
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Then, we have the Marchenko equation from Eq. (26): 

x < x 2 • 

(58) 
For A(n, n), Eq. (27) implies 

1/A2(n,n) ~ 1/ ~2U2(x,X) = 1 - 2M(x,x), 

A(n,n) ~ ~U(x,x) = 1 + M(x,x). 

Remembering that a(n) = 1 exp{- i~2[q(n~ - ~) + 
q(n~)]}, and with the assumption for convergence, we 
have 

In a(n) = lnA(n,n) -lnA(n - 1,n -1) 
aO(n) 

(59) 

~ - ~2(q(x) - qO(x)) = ~[A(x ,x) - A(x - ~,x - ~)] 
or 

dA(x,x) 
q(x) - qO(x) = - --

dx 
(60) 

The limit for the wavefunction <p+(~,n) in Eq. (11) is 

<p+(~,n) ~ <p+(k,x), 

thus 

<p+(k,x) = <P2(k,x) + J"" dx1A(x,x1)<PNk,x1)· 
x 

Equations (56)-(61) completes the limiting procedure. 

Obviously, the same limiting process holds for the 
one-dimensional case. We merely state the results. 

Corresponding to Eqs. (52), (53), (54), (55), (46), and 
(48), we have 

for x < Xl' 

A1(x,Xl ) + 0l(X,X l ) + fOO dx2Al(x,x2)Ol(X2,xl) = 0, 
x (53') 

(54') 

0l(X 2 ,X l ) = fOO dk n(k,x2)jp(k,x l )[S2l(k) - S2Q(k)] 
-00 21T 

+ 2!:JL~(i)n(ki ,x2)jp(k j ,xl) , 
- ~:JL£0)2(j)jp(k?,X2)n(kJ,Xl)' (55') 

j 

where 

_1_ = iC j [£"[Sl1(k)]-l] 
:JL~ (i ) dk k= iKj 

fl(k,x) =n(k,x) + f"" dxlAl(x,xl)n(k,xl)' (46') 
x 

Potential q(x) is given by 

dAl(x,x) 
q(x) - qO(x) = -. (48 / ) 

dx 

V. SUMMARY 

For S-wave scattering, we have obtained the discrete 
analog of the Marchenko equation, Eqs. (24)-(27) and (16), 
with a nontrivial comparison system. The discrete ver
sion for the expression for phase equivalent potentials, 
Eq. (28), is deduced. The relation between the Gel'fand-
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Levitan method and the Marchenko method is summar
ized by Eqs. (30), (30'), and (31). 

For the one-dimensional SchrBdinger equation, two 
equivalent discrete Marchenko equations are obtained: 
Eqs. (52)-(55) and their corresponding equations for 
f 2(A, n). The relations between the two sets of equations 
are given by Eqs. (50), (50'), and (51). 

Finally, it is shown how the continuum limit can be 
obtained. 

APPENDIX A 

As an example of contrast, the inverse problem for 
the transport theory2 is discussed here in the Marchenko 
scheme. Here the given information is the spectral 
function 

~ 
sin8 dA _ 1 :$ A :$ 1, 

1T14> .. (A,O)12 ' 
dp(A) :::; 

~N~O(A - Aj)dA, otherwise, 
(AI) 

or equivalently we are given I cf>. (A, 0) I on the unit 
circle, and the positions and normalizations of the 
bound states. Thus, in order to apply Eqs. (26) and (27), 
we must find S(A) :::; cf> _(A, 0)1 cf>. (A, 0) == e2 ;0(,,). 

Consider the function defined by 

\ - In (cf>.(A, 0)9[z ;!(z j - z»)) :::; 1/1 .. (z), 

w(z) = . 
(In (cf>_(A,O)I.I[zl(z -liz;»):::; 1/I_(z), , 

On Iz\ =1, 

1/I.(z) -1/I_(z) = -In 1cf>.(A,O)\2 

and 

+2:; In[{zj -z)(z-l/z;)/zjz], 
j 

Izi < 1, 

Izi > 1. 

1/1. (z) + 1/I_(z) = 2io(A) + In (I.I[(z j - z)zl(z - 1/z;)z d). 
I 

By the Plemelj formula, 

. [~(Z-l/Zi)Zi)] I "f(z')dz' 2z6(A) = In II - ':JI , 
j (z; - z)z 1Ti z' - z 

(A2) 

where 

I(z') =-In 1<P+(A',0)12 + 2:; In[(l- z'lzj)(I-1/z'zj)]' 
i (A3) 

Therefore, 

(z j - liz) [1" I(ZI)dZ'] S(A) :::; II exp - ':JI • 
i (Zj-z) 1Ti Z'-Z 

(A4) 

This extra step necessary to apply the Marchenko equa
tion to the inverse transport problem is analogous to the 
inconvenience introduced by using Gel'fand-Levitan 
equation for inverse scattering prolllem. Thus, while 
either the Gel'fand-Levitan or Marchenko approach can 
be applied to both the inverse transport and inverse 
scattering problems, the Gel'fand-Levitan method is 
peCUliarly well suited to the transport problem while 
that of Marchenko has the similar advantages for in
verse scattering. 
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APPENDIX B 
The completeness relations for the one-dimensional 

solutions can be found in a Similar fashion as for S-wave 
case.1 Here, we conSider the integral 

1 00 

i(n, l) = - - J dX 2:; G(A;n, m)o(m, I), (B1) 
2'ITi C m=-oo 

where the Green's function G(A; n, m) is defined by 

G{Ain, m) = - 21/11 (A,n)1/I2(A, m)/Sll (A)(Z - Z-l), 

= - 21/11 (A, m)1/I2 (A, n)/Sll (A)(Z - Z-l), 

and c is the unit circle. 

For 1 :$ n, 

_ 1 "dz 1/11 (A, n)1/I2 (A, l) 
I(n, l) = - ':JI - --:::.~--=-~ 

21Ti Z Sl1 (A) 

:::; ~ <fi dz 11 (A, n)[/i(A, 1) + S21 (A)/1 (A, l)] 
21TZ z 

= ~ <fi dz [J~(A,n) + S12{A)/2(A,n)]/2 (A, l) 
21TZ z 

n::?::m, 

n< m, 
(B2) 

=.!.. r 1 ~A [1/11 (A,n)1/Ii(>", l) + 1/I2(A,n)1/I~(A, I)] 
21T -1 sm8 (B2) 

For l > n, the role of n and l is interchanged in Eq. (B2) 
So that we have the complex conjugate. But, l(n, 1) will 
eventually be real; so Eqs. (B2) actually hold for all n 
and 1. 

Next we evaluate Eq. (B1) by residues inside the unit 
circle. The contributions from the bound states give 

(B3) 

The contribution from Z = ° is zero except for n = 1, 
and 

RQ(n,1) = o(n, 1). (B4) 

Therefore, the completeness relations (43)-(45) follow. 
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It is known that the probability E p(O, S) that an arbitrary interval of length S contains none of the 
eigenvalues of a random matrix chosen from the orthogonal (fl = 1), unitary (fl = 2) or symplectic 
(fl = 4) ensemble can be expressed in terms ifinfinite products n:~o£l - A2.(S)] and 
II; ~o£l = ~n + l(S)], where An (S) is an eigenvalue of a certain integral equation. Using values of 
An(S), valid for S large, obtained in connection with a recent study of spheroidal functions, we 
derive asymptotic expressions (S» 1) for £15(0, S), 

I. INTRODUCTION 

In the last decade many authors have studied the dis
tribution of eigenvalues of matrices taken from the so 
called orthogonal, unitary or symplectic ensembles.1 

Let D be the average distance between successive eigen
values of tbese matrices and let Ea{O,S) be the proba
bility that a randomly chosen interval of length SD does 
not contain any of the eigenvalues; the parameter (3 tak
ing tbe values 1,2, or 4 respectively as tbe matrices 
are taken from the orthogonal, unitary or the symplectic 
ensemble. Then we have2 

(1) 

GO 

E 2 {0,S) = n [1 - An (C)], 
,,=0 

(2) 

(3) 

where C = 1TS/2 and where the An are the eigenvalues of 
the integral equation 

V(x) = J1 sin[C~ - y)] f(y)dy 
-1 1T(X -y) 

(4) 

arranged in decreasing order of magnitude, 

(5) 

Though Eqs. (1)-(5), as they stand, are complete, it is 
very helpful to have some furtber information on the 
eigenfunctions fn(x); namely, that tbey also satisfy the 
differential equation 

:x (1 - X2) ~ + (X - C2x 2)f(x) = O. 

They are called spheroidal functions, they have been 
studied extensively in the literature,3 they have been 
tabulated,4 and the tables have been used5 to calculate 
numerically tbe Ea(O,S) for not too large S. 

(6) 

Thus tbe Ea(O,S} are quite accurately known for values 
of s:5 5. Our knowledge of them for S:;}> 1, however, is 
not so certain. Dysons used a tbermodynamic argument 
to derive tbeir asymptotic behaviors as 

1T2 1T 1 
InE1 (0,S) 1:::l-

16 
S2 -4" S + sInS + 0(1), (7) 

1T2 
InE2 (0,S) I:::l - 8 S2 + 0(1), (8) 

1T2 1T 
InE4(0,S) I:::l_ T S2 +2S+% InS+O{l), (9) 
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A comparison of these equations with Eqs. (1), (2), and 
(3) shows that at least the terms in InS are certainly 
wrong. 

It is also known7 that E 2 (0,S) exp[(1T2/8)S2] goes to 
zero as S ~ GO, contradicting Eq. (8). Thus one can 
trust Eqs. (7)-(9) at most up to terms in S. 

Lately, some authors tried to obtain asymptotic formu
las for fn(x) and An tbemselves. Slepian8 gave such 
formulas valid in two regions: (i) n finite, C ~ 1, and 
(ii) n ,.., C ~ 1. However, tbey are not sufficient to as
certain the asymptotic behavior of the infinite products 
in Eqs. (1)-(3). A knowledge of An for intermediate 
values of n is needed as well. Recently des Cloizeaux 
and Mehta9 bridged this gap, giving asymptotic formulas 
for An valid for any n. They read as follows. 

First determine b,. by the implicit relation 

( 1.) 1T _ rm1n(1.h) (e -Y2)1/2 A.. (b) n + 2 2 - C Jo --- U.Y + 11 , 
1-y2 

where 
2b 

E=l--, 
C 

l1(b) = cp{b) -} (In I} 1-1), 
and cp(b) is tbe phase of r[~ + i(b/2)], 

r[~ + i(b/2)] = ( 1f \1/2 ei<p(b). 

Ch(1Tb/2») 

Then 

(10) 

(11) 

(12) 

(13) 

1- An = (21T)1/2(u/2e)UI2[r (u + 1Jl
1

e -2CO(E) [1 +e1rb ]-l, 
2 }J (14) 

where 

u = Ce = C- 2b 

and the function li(E) is defined by 

liCE) = (1 - E) 0 (1 11/2 

if E .;; 1 = 0, 

if E :;;. 1. 

Sin Gt da _ E:. , • 2 ) 

(sin2a + E cos2a)l/2 4 

(15) 

(16) 

We shall use Eqs. (10)-(16) to derive tbe asymptotic 
results 

(17) 

(18) 
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En(O,S) '" g 2-9 / 8 exp (_ 1T!2 + 1T: _ ~ lOgS) , 

where g is an unknown constant. 

II. CALCULATION 
Let us derive asymptotic expressions of 

00 

F(C) = n [1- A2n (C)], 
n=O 
00 

G(C) = nI]o [1- A2n+1 (C)], 
and 00 

H(C) == F(C)G(C) = n [1 - An (C)] 
n=O 

for large values of C. 

(19) 

(20) 

(21) 

(22) 

First, it is convenient to express F(C) and G(C) in 
terms of H(C). As was shown in Ref. 9, when n is finite, 
un "" 2n + 1, E« 1, and Eq. (14) becomes 

1- An(C) "" .fii 23n+2 e-2C cn+1/2/n !. (23) 

Thus for fixed n and C ~ co 

[1 - A2n(C)]1/4 [1 - A2n+2(C»)3/4 ( 1 )1/4 

[1- A2n+1 (C»)3/4 [1 - A2n+3(C)]1/4 '" 1 - (2n + 2)2 (24) 

and this relation may also be considered as valid when 
n and C are both large, since in this case the ratio on 
the right side of Eq. (24) is nearly equal to one. 

Thus, we may write 

F(C) _ (1- Ao)3/4 n (1- A2n)1/4 (1- A2n+2)3/4 

G(C) - (1- A1)1/4 n=O (1- A2n+1)3/4 (1- A2n+3)1/4 

= (1 - Ao)3/4 n ( 1 )1/4 
(1 - A1)1/4 n=O 1 - (2n + 2)2 

"" (21T)1/4 e- c (2/1T)1/4 = ..J2 e-c (25) 

[since sinO/O == n~=l(l- 02/n21T2)]. 

Thus 

F(C) "" 21/4 e- C/ 2 [H(C)]1/2, 

G(C) "" 2-1/ 4 e C/ 2 [H(C)]1/2. 
(26) 

NOW, we have to calculate InH(C), which according to 
Eq. (14) is given by 

co 

InH(C) = 6 In(l - An) 
n=O 
~ (21T)1/2 (Un /2e)Un /2) 00 

= LJ In - 2C 6 li(En) 
n=O r[(Un + 1)/2] n=O 

00 

6 In(l + e" bn ). (27) 

In Eq. (10)1 the condition E < 1 (or b> 0) implies that 
n < 2C /IT - 2' Thus the preceding equation can also be 
written 

InH(C) = :1)1 + :1)2 + :1)3' 

where 
co (21T)1/2 (un /2e) "n/2) 

:1)1 = E In . .:..........---'-.::..:....:..........--
n=O r[ (un + 1)/2] 

(28) 

(29) 

:1)2 = - 2C E [li(En) + (1T/4)(1- En)]' (30) 
0<n<2C/1I-1/2 

00 

:1)3 = - E In[l + e-1Ibn
]. 

n=O 
(31) 
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For large values of u, Stirling formula gives 

Inr (u ~ 1) = In(iJ- i +} In(21T) - 1~ , 
00 1 

:1)1 '" 6 -12 + 0(1). 
n=O Un 

(32) 

For finite values of n, we know9 that U "" 2n + 1; thus 
the sum (32) diverges when n -t co. Obviously a cut-off 
must be introduced and this cut-off is proportional to C; 
therefore, 

:1)1 c,; 2
1
4 In C + 0(1) (33) 

The term :1)2 is the largest one and the main contribu
tion to this term is obtained by replacing the sum by an 
integral. Thus, we write: 

J1 ~ 
:1)21 == - 2C [liCE) + (1T/4)(1- E)] - de:, 

o dE 

:1)22 = - 2C E [li(En) + (1T/4)(1- En)] 
0<n<2C/1I-1/2 

(34) 

(35) 

+ 2C J1 [liCE) + (1T/4)(1- e:)] tin de:. (36) 
o de: 

For 0< e: < 1, we have 

liCE) + ~ (1 - e:) = (1 - E) 10"/2 sin
2

0! dO! 
4 [sin20! + e: COS20! ]1/2 

(37) 
and from Eqs. (10) and (11), we obtain 

dn = £ (J-I< (E_y2P/2(1_y2)-1/2dy -'Tj'(b)\ 
de: 1T 0 J 

= £ (J"/2 
dO! _ 'Tj'(b)\ • (38) 

1T 0 (1 - E sin20!)1/2 J 

Introducing the elliptic integrals 

E(k) = 10
11

/
2 

(1 _ k 2 sin20!)1/2 dO!, 

1f/2 
K(k) = 1 (1 - k 2 sin20!t1/2 dO!. 

o 
We may also write 

(39) 

(40) 

li(e:) + i- (1 - e:) = E( .. Jt - E) - €K(.Jl - E), (41) 

d
dn = £ [K(i€) - 'TjC(b)]. (42) 

E 1T 

Thus D21 is the sum of two terms [remember that 
b == (C/2) (1 - e:)]: 

2C2 J1 
D211 == -11 d£[E(.JT=E") - €K(.Jl - e:)]K(IE), 

o ~~ 

D212 = ~ 10C/2 db'Tj'(b)b 10"/2 

x sin20!(1- ~ cos20!y1/2 dO!. (45) 

Replacing e: by (1 - e:) in Eq. (44), we have also 

2C2 J1 D211 == - - de:[E(fE) - (1 - e:)K(fE)]K(.J1- e:)de:. 
1T 0 

(46) 
Adding Eqs. (44) and (46) and using Legendre's rela

tion,lO 
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E(..J1- E)K(.fE) + E(,[E)K(!f=E)-K(.fE)K(.f1- E)= IT/2. 

We get 
(47) 

D211 = - C2/2. (48) 

On the other hand, from Eqs. (12), (13) and from Stirl
ing's formula, we deduce that for I b I ~ 1, 7j(b) "'" 1/12b. 
For this reason, it is convenient to write D212 as the 
sum of two terms: 

8 J C/2 JII/2 
D212 = - db7j'(b)b 

IT 0 0 

[
f. 2b \-1/2 ~ 

x da sin2a \1 - C cos2a} - 1J 
C/2 

+ 2 J db7j'(b)b. 
o 

(49) 
In the limit C -7 co, the first term is not changed if we 

replace 7j' (b) by - 1/12b2 • Then, putting b = Ct/2, we 
get for this term the convergent integral 

_ ~ J1 dt JII/2 da sin2a [(1- t cos2a)-1/2 - 1] 
3lT 0 t 0 

which is a constant. 

The second integral diverges logarithmically when 
C -7 co, since b 7j' (b) "'" - 1/12b. Thus we obtain 

D212 = - i- InC + 0(1). (50) 

From Eqs. (43), (48), and (50), we get 

D21 = - C2/2 - ~ InC + 0(1) (51) 

The main contribution to the correction 5)22 comes 
from small values of n. For n fixed and C large, we 
have En = (2n + 1)/C. Thus, we may write 

:1)22 = - 2C I; [o(2n + 1) + ~ (1 _ 2n + 1) 
o .; n < 2 C/II C 4 C 

_ ~ J2
(n+1)/c [OrE) + (IT/4)(1- E)]dE]. (52) 

2 2n/C 

By expanding OrE) + (IT /4)(1 - E) in terms of [E - (2n + 
1)/C] and integrating with respect to E, we obtain 

:1)22 "'" ~ I; 0" (2n + 1) (53) 
3C O';n<2C/rr C· 

As was shown in Ref. 9, for small values of E 

OrE) + ~ (1 - E) "'" 1 + ~ InE - E (In 2 + t). 
4 4 

Therefore, 

0" (E) "'" 1/4E 

Thus, we find 

:1)22 = ~ I; 
12 O .. n<2 Cj1f 

1 
2n + l' 

(54) 

(55) 

(56) 

The cut-off which appears in this formula may not be 
exactly right, but in any case, it must be of the order of 
C and therefore we find 

:1)22 "'" i4 InC + 0(1). 

Thus, Eqs. (34), (51), and (57) give 

:1)2 = - (C2/2) - i In C + 0(1). 

(57) 

(58) 

Now, let us calculate the last term :1)3' The values of 
b n which contribute to the sum (31) must be smal~ with 
respect to C. In this case, as was shown in Ref. 9, Eq. 
(10) can be approximately written 
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(n + !) i = C + cp(b) - (b/2) In4C. 

On the other hand, the sum :1)3 can be written as an 
integral 

:I) "'" - f+oo In(1 + e-n1bl ) I dn I db. 
3 -00 db 

From Eq. (59), we get 

dn =! cp'(b) _.! In4C. 
db IT IT 

Keeping the main term, we have 

1 +00 

:1)3"'" - 1f InC loo In(1 + e-n1bl)db + 0(1) 

= ~ InC J1 In(1 + t) dtt = - ~ InC + 0(1). 
lT~ 0 6 

The value of InH(C) is found by using Eq. (28) and 
collecting the results of Eqs. (33), (58), and (62): 

InH(C) "'" - (C2/2) - tin C + 0(1). 

(59) 

(60) 

(61) 

(62) 

(63) 

With the help of Eqs. (26), we obtain the final result: 

F(C) "'" h 21/4 exp (- ~2 - j - i log C), (64) 

G(C) "'" h 2-1/ 4 exp (- ~2 + ~ - i log C), (65) 

H(C) "'" h2 exp (- ~2 - i log C), (66) 

where h is an unknown constant. 

incidentally, we note that the functions A(C) == F'(C)/F(C) 
and B(C) == G'(C)/G(C) are related by an exact relationll 

dd
C 

[A(C) + B(C)] = - [A(C) - B(C)]2 (67) 

and that the expressions (64), (65), (66) are compatible 
with this relation, as can be easily verified. 

According to Equations (1), (2), (3) and (20), (21), (22) 

E1 (0, S) = F(lTS/2), 

E 2(O,S) = H(lTS/2), 

E 4 (O,S) = HF(lTS) + G(lTS)]. (68) 

Thus, using Equations (64), (65), (66), we deduce imme
diately Equations (17), (18), (19) [where g = h(2lT)-1/8], 
i.e., the announced asymptotic behavior of Ea(O, S) for 
{3 = 1,2,4. 

lSee, for example, M. L. Mehta, Random Matrices (Academic, New York, 
1967). 

2M. L. Mehta and F. J. Dyson, J. Math. Phys. 4, 715 (1963), Eqs. (16), 
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1959). 

4J. A. Stratton, P. M. Morse, L. J. Chu, J. D. C. Little, and P. J. Corbato, 
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The octonion (Cayley) algebra is studied in a split basis by means of a formalism that brings out its 
quark structure. The groups SO(8), SO(7), and G2 are represented by octonions as well as by 
8 X 8 matrices and the principle of triality is studied in this formalism. Reduction is made through 
the physically important subgroups SU(3) and SU(2) ® SU(2) of G2 , the automorphism group of 

octonions. 

1. INTRODUCTION 

Octonions made their appearance in physics as a by
product of an early attempt to generalize quantum 
mechanics through the associativity condition for physi
cal observables. 1. 2 In their algebraic approach to quan
tum mechaniCS, Jordan, von Neumann, and Wigner focused 
on the properties of Hermitian density matrices. Such 
matrices close under the commutative "Jordan" product 
which can be defined as their anticommutator. Thus, 
in switching from the matrix algebra of density ma
trices, we trade associativity for commutativity. The 
two formulations are equivalent except in the case of 
octonion hermitian 3 x 3 density matrices which form 
an exceptional Jordan Algebra. 2 In the latter case the 
nonassociativity is intrinsic and cannot be removed by 
going over to a corresponding operator algebra in a 
finite Hilbert space. In fact, it originates in the struc
ture of the underlying octonion algebra which is a not 
commutative, not associative, but, alternative division 
algebra. 

The Jordan approach has proved to be more fruitful 
in mathemahcs than physics. It has since been quietly 
dropped in favor of the associative Dirac algebra of 
operators in Hilbert space,3 which generalizes the alge
bra of finite matrices. 

The story took a new turn when the charge space 
made its appearance two decades ago in the Gell-Mann
Nishijima4 scheme based on isospin and strangeness. A 
decade later, this led to the quark structure of elemen
tary particles, revealing the underlying SU(3) symmetry.5 
Meantime another group of rank two, namely G2 was 
tried6 and abandoned. NOW, G 2 is the automorphism 
group of the octonionalgebra and it admits SU(3) as a 
subgroup. In fact, SU(3) is the automorphism group of 
the multiplication rules among six of the octonion units. 
In terms of this subgroup the generators of G2 split 
into an SU(3) octet, a triplet and an antitriplet. Further
more G 2 has a SU(2) x SU(2) subgroup under which the 
generators decompose as (1,0), (0, 1), and (1/2,3/2). 
One of the SU(2) is the isospin, while the other is a 
generalization of hypercharge to a rotation group. 
Hence the quark structure is manifest in G2 and also 
in the other exceptional groups which are all related 
to octonions7 and admit G2 as a subgroup. An example 
is the exceptional Jordan algebra which has the excep
tional group F4 as its automorphism group. S The quark 
structure of this algebra was pointed out by Gamba. 9 

Other possible connections of the Cayley algebra with 
internal symmetries were discussed by Pais 10 and 
others 11 while the admissibility of the elements of the 
exceptional Jordan algebra as observables was con
sidered by Sherman1·2 following the general algebraic 
framework of Segal. 13 Finally, we have shown recently14 
that the Poincare group possesses an octonionic repre
sentation that leads to a quark structure ariSing from 
the breaking of G2 with SU(3) as the surviving subgroup. 
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An independent, and perhaps related line of research 
concerns the construction of Weinberg type renorma
lizable models 15 based on groups that do not give rise 
to triangular anomalies, including G 2 , SO(7), and SO(8), 
The attempts enumerated above seem to provide suffi
cient motivation for a reformulation of the octonion 
algebra, and the groups SO(8), SO(7), and G2 connected 
with it, in a manner which manifestly exhibits its quark 
structure and its SU(3) content in charge space. Al
though a vast mathematical literature exists on these 
subjects,7.16 it is not presented in a form directly 
usable by the particle physicist. The object of the pre
sent paper is to recast the mathematical theory in a 
quark language, in direct correspondence with Gell
Mann's treatment of SU(3),5 to develop an 8 x 8 ma
trix formalism, initiated by Seligman,17 which allows 
us to treat SO(8), SO(7), G2 in a unified way and pre
pare the ground for the investigation of the properties 
of an octonionic Hilbert space. 1S 

The features which seem to be new consist of a ma
trix form for the octonion multiplication, the repre
sentation of G2 through purely octonionic multiplica
tion in a split baSis and the reduction of SO(8), SO(7), 
and G 2 with respect to their physically important sub
groups SU(3) and SU(2) x SU(2). It is this reduction 
which exhibits the quark structure of the algebra. 

The contents of the paper are as follows. The 
octonion algebra in the split basis is introduced in Sec 2 
and its automorphism group G2 derived in Sec. 3. The 
Lie algebra of G2 and its imbedding in SO(7) are given 
in Sec. 4. The follOwing section 5 covers the SU(3) and 
SU(2) x SU(2) subgroups of G 2 • Section 6 is devoted to 
split octonions and spl~t G2 while the quark structure 
in split basis emerges in Sec. 7. A purely octonion re
presentation of split G2 appears in Sec. 8. The 8 x 8 
matrix formulation of the Cayley algebra forms the 
object of Sec. 9. The imbedding of G 2 in SO(7) and SO(8) 
and its reduction with respect to its SU(2) x SU(2) sub
groups are discussed respectively in Secs. 10 and 11. 
Finally the principle of triality is discussed within the 
formalism developed previously in Sec. 12. Additional 
details such as the structure constants of G 2 , Zorn's 
vector-matrix method, theorems pertaining to triality 
and the realization of the Cayley algebra by means of 
Gell-Mann's 3 x 3 A-matrices, and Dirac's 4 x 4 y
matrices appear in the appendixes. 

2. THE OCTONION ALGEBRA AND ITS SPLIT BASIS 

A composition algebra is defined as an algebra A with 
identity and with a nondegenerate quadratic form Q de
fined over it such that Q permits composition, i.e. for 
x,y EA. 

Q(XY) = Q(x)Q(y). (2.1) 

According to the celebrated Hurwitz theorem, there 
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FIG.!. 

exist only four different composition algebras over the 
real or complex number fields. These are the real num
bers R of dimension 1, complex numbers C of dimension 
2, quaternions H of dimension 4, and octonions 0 of di
mension 8. Of these algebras, the quaternions H are not 
commutative and the octonions 0 are neither commuta
tive nor associative. l9 A composition algebra is said 
to be a division algebra if the quadratic form Q is aniso
tropic i.e., 

if Q(x) == 0 implies that x == o. 

Otherwise the algebra is called split. 

Assuming that the reader is familiar with the alge
bras R, C, and H, we shall review briefly the properties 
of octonion algebra 0 20 (sometimes called the Cayley 
algebra). 

A basis for the real octonion 0 will contain eight ele
ments including the identity 

1, e A> A == 1, ... ,7, where e~ == - 1. 

For later application to the 8U(3) symmetry in parti
cle physics, we label the elements e A such that they 
satisfy the following multiplication table: 

and 

more conCisely, 

(2.2) 

FIG. 2. 

J. Math. Phys., Vol. 14, No. 11, November 1973 

1652 

where a ABC is totally antisymmetric and 

a ABC == + 1 for ABC == 123, 516,624,435,471,673, 572. 

Note here the cyclic symmetry obtained by ordering 
seven points clockwise on a circle with the numbering 
(1243657) as given in Fig. 1. Then a triangle ABC is 
obtained from (123) by 6 successive rotations of angle 
211/7. In Fig. 1 the elements corresponding to the cor
ners of the triangle form a basis of a quaternion subalge
bra (together with the identity element). Another con
v~nie.nt way of representing the multiplication table by 
smglmg out one of the elements is provided by the tri
angular diagram given in Fig. 2, where arrows show the 
directions along which the multiplication has a positive 
sign, e.g. 

From the above multiplication table it is clear that 
the algebra 0 is not associative. Yet it satisfies a weak
er condition than associativity, namely alternativity, Le., 
the associator [x, y, z] of the elements x, y, z defined as 

[x, y, z] == (xy)z - x(yz) (2.3) 

is an alternating function of x, y, z: 

[x,y,z] == [z,x,y] == [y,z,x] == - [y,x,z) == - [x,z,y]. 

This property if trivially satisfied by associative alge
bras R, C, and H. 

The octonion algebra 0 with the above basis con
Sidered over the real numbers R is a division algebra 
with the quadratic form Q defined by 

Q(x) == xx == xx, 

where x is the octonion conjugate of x obtained by re
plaCing e A in x by - eA' 

This quadratic form is also called the norm form and 
denoted by N(x). Then 

7 

N(x) == xx == xx == x~ + ~ x~. (2.4) 
A=l 

For the split oct onion algebra we choose the following 
basis: 

U! == tee! + ie4), 

u3 == t(e 3 + ie s), 

ui == t(el - ie 4 ), 

uj == t(e 3 - ie s), 

U2 == t(e 2 + ie5 ), 

U o == t(l + ie7 ) 

U2 == t(e 2 - ie 5 ), 

u('j == t(l - ie7 ), 

where i == .J- 1 and is assumed to commute with all eA' 
These basis elements satisfy the multiplication table: 

i,j,k == 1,2,3, 

ujuj == €ijkUk' 

ujuj == - 6 iju O' U1Uj == - 6 iju('j, 

uiUO == 0, uiu('j == up uluo == uf, utu('j = 0, 

UOUj==U i , u('ju j == 0, u oUl == 0, uouf == uf, 

u~ == uO' u('j2 == UO' uouO == uOuo == O. 
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Clearly, the split octonion algebra contains divisors 
of zero and hence is not a division algebra. In Appendix 
B, we give a realization of split octonion algebra in 
terms of Zorn's vector matrices. 

3, G2 AS THE AUTOMORPHISM GROUP 
OF OCTONIONS 

An automorphism of an algebra A is defined as an 
isomorphism of A onto itself. Under the automorphism, 
multiplication table of A is left invariant, Le., 

X,y E A, T E AutA, 

then 

T(xy) = T(x)T(y) 

and the automorphisms map the identity 1 into itself. 

The set of all automorphisms of composition algebras 
form a group. For the real numbers R and complex 
numbers C, the groups of automorphisms are the trivial 
identity mapping and the cyclic group C 2' respectively. 
The automorphism group of quaternions is the SU(2) 
group.21 Below we shall investigate the automorphism 
group of the octonions, which is the exceptional Lie group 
G 2 • 

We use the following results of M. Zorn22 as our 
starting point: Each automorphism of the Cayley algebra 
o is completely defined by the images of 3 "independent" 
basiS elements. 23 Consider one such set, say {e l' e 2' e 4}' 
Then there exists an automorphism a such that 

a(e 1) = e1, 

a(e 2) = cos<he 2 + sin<P1e3' 

a(e 4) = cOS¢2e 4 + sin<P2e 7' (3. 1) 

The images of the other basis elements are deter
mined by the conditions: 

a(e 2)a(e 4) = a(e s), 

a(e 1)a(e4) = a(e7), 

aCe l)a(e 2) = a(e3), 

a(e 4)a(e3) = a(e5), 

It can easily be checked that aCe A) satisfy the same 
multiplication table as e A and hence a is an automor
phism. Conversely, one has the very important result 
that each automorphism % belongs in this manner to 
at least one Cayley basis. 

Now let us write down all the images of all basis ele
ments under a explicitly and observe some general 
patterns: 

aCe 1) = e 1> 

(
a(e 2») (COS<P1 sin<P1 ) (e 2) 
a(e3) = - sin<P1 COS<P1 e3 , 

(
a(e4») (COS<P2 sin<P2 ) (e 4) (3.2) 
a(e7) = - sin<P2 COS<P2 e7 , 

(
a(e s») (COS (4) 1 + <1>2) - sin(4)l + <1>2») (e s) 
aCe 5) - sin(<P1 + <P2) cos(<P1 + <1>2) e 5 • 

We see that under the automorphism a we have three 
invariant planes (e 2, ej), (e 4, e7), (es ' e5) that undergo 
rotations through angles <1>1> <1>2' <1>3' respectively, such 
that 
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We shall call the automorphisms of the form above 
canonical automarphisms. Each canonical automorphism 
has a fixed point and 3 invariant planes. If we denote 
the fixed point by e k then the invariant planes (e t, e j ) 

are determined by the conditions e t e j = e k' 

For each Cayley baSiS, there are seven independent 
canonical automorphisms. The canonical automorphism 
given above can be written more concisely as: 

(3.3) 

where ~3 and ~8 are the Gell-Mann matrices 

~3 =(~ -~ ~ o o~! (
1 0 0) 

As = )g 0 1 0 

o 0 - 2 

and a 1 and f31 are related to <1>1 and <1>2 as: 

This can be gener\llized to all the canonical auto
morphisms. First define seven octonionic 3-spinors 

1/1 (e A): 

1 (e
3 

+ ie
5
) (1 + ie ) e~ 

!/I(e 4) ="2 e s + ~e2 = 2 4 e6 , 

e7 + ze 1 7. 

1 (e 1 + ie:) (1 + ie )(e ~ 
!/I (e 5) ="2 e4 + ~e3 = 2 5 e4 , 

e7 + ze 2 e7 

1(e
2 

+ ~e4) (1 + ie6) ~ 
!/I(e 6) ="2 e5 + ~e1 = 2 e5 , 

e7 + ze3 e7 

1 (e
1 

+ ~e4) (1 + ie7)(e~ 
!/I(e7) ="2 e2 + ~e5 = 2 e2. 

e3 + ze6 e3 

A canonical automorphism leaving the element e A 

fixed is defined by its action on !/I (e A): 

(3.4) 

aA:!/I(e A) -? aA!/I(e A) = !/I'(e A) = e(a
A

>..s+sA>"s)eA1/I(e A) 

= e-HaA>..s+BAAS)1/I(e A)' (3.5) 

no sum over A. 
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The rows (e B + ie c) of 1f; (e A) are determined by the 
invariant planes (e B , e c) of the automorphism (TA and 
the ordering of the rows is such that the first elements 
along the column define imaginary units of a quaternion 
subalgebra in a positive sense. Hence the cyclic per
mutation of the rows of 1f; (e A) is immaterial for the 
subsequent discussion. Canonical automorphisms in
volve two independent parameters each and hence gener
ate a 14-parameter Lie group. That this is the complete 
automorphism group of octonions follows from the well
known result that the automorphism group of octonions 
is a 14-paramete.r Lie group of type G 2 • 

Consequently, every automorphism of Cayley numbers 
can be written as a product of canonical automorphisms 
and; as stated above, every automorphism can be re
duced to the canonical form in a suitably chosen basis. 

4. THE LIE ALGEBRA OF G2 AND ITS IMBEDDING 
IN som 

Using the result that canonical automorphisms gener
ate the Lie group G 2, let us now find its Lie algebra. 
As parameters corresponding to the generators of G 2 , 

we shall take O!A and {:3 A rather than the angles ct>1 and 
ct>1' Now consider a canonical automorphism (T A with 
{:3 = 0, then 

which gives 

(eB) =(COS~A sinO!A \ (e B ), 

e ~ - smO!A COSO!AJ e c 

Fl = - i(J24 - J 51), Ml = (i//3)(J24 + J 51 - 2J73 ), 

F2 = i(J54 - J 12 ), M2 = (- i;'fS)(J54 + J 12 - 2J67 ), 

F3 = - i(J14 - J 25 ), M3 = (i/..j3)(J 14 + J 25 - 2J36 ), 

F4 = - i(J16 - J 43 ), M4 = (i/..j3)(J16 + J 43 - 2J72 ), 

F5 = - i(J46 - J 31), M5 = (i/..j3)(J46 + J 31 - 2J57 ), 

F6 = - i(J35 - J 62 ), M6 = (i/..j3)(J35 + J 62 - 2J71 ), 

F7 = i(J65 - J 23 ), M7 = (- i/..(3)(J65 + J 23 - 2J47 ), 

Note that the subscript A in M A and N A does not refer 
to the basis element left invariant by the corresponding 
canonical automorphism. We have used the above num
bering to be consistent with Gell-Mann's notation for 
SU(3), which is a subgroup of G2 as is shown in the next 
section. The generators FA and M A , A = 1, ... ,7 close 
under commutation and form the Lie algebra of G 2 • 

Denoting the Lie algebra of a group G by £G we have 

£G 2 = FA 87 M A' 

£SO(7) = FA Ell M A EB N A' 

The structure constants of £G 2 are given in Appendix 
A. In the following sections, we shall denote the genera
tors of SO(7) by capital Latin letters FA' M A' and N A and 
the corresponding n x n matrix representation of these 
generators by A(~), Il(~), and JI(~), respectively. The 
parameters corresponding to the generators M A' N A,and 
F A will be denoted by m A> n A' and fA' respectively. 
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Therefore the group action with parameter O!A induces 
rotations in the invariant planes (e B' e c) and (eD' e E) 
through angles (l!A and - O!A, respectively. Hence the 
generator of this group action is 

where J BC and J DE are the anti-Hermitian rotation gene
rators. 

Similarly, the generator corresponding to the group 
action with parameter (:3 A is 

Since the indices go from 1 to 7, the 14 generators thus 
constructed will form a subalgebra of SO(7) if they close 
under commutation. As will be shown below, they indeed 
close under commutation and hence establish the known 
result that G 2 is a subgroup of SO(7). The remaining 
generators of SO(7) can be taken as 

(JBC + J DE + J FG ) 

which are generated by the mappings: 

rA1 e -lrA1 
1f;(e A) ~ e 3 A1f;(e A) = e 31f;(e A)' 

where 13 is the 3 x 3 identity matrix. 

For reasons that will be clear later, we shall modify 
the above basis for G 2 and SO(7) and consider the fol
lowing Hermitian basis: 

N1 = i(J24 + J S1 + J73 ), 

N2 = i(JS4 + J 12 + J 67 ), 

N3 = i(J14 + J 25 + J 3S)' 

N4 = i(J16 + J 43 + J 72 ), 

N5 = i(J46 + J31 + J 57 ), 

N6 = i(J35 + J 62 + J 71), 

N7 = i(JS5 + J 23 + J 47 )· 

5. THE SU(3) AND SU(2) x SU(2) SUBGROUPS OF G2 

From the above table of the generators of G 2 one can 
easily observe that there are eight generators annihilat
ing24 a given basis element eA' The generators anni
hilating, say, e 7 are FA' A = 1, ... ,7, and Fa = - M3 • 

They close under commutation and form the Lie algebra 
of SU(3): 

a,b,c = 1, ... ,8, 

where f abc are the usual structure constants of Gell
Mann. Hence the automorphisms of the Cayley algebra 
leaving a basis element e A invariant form a subgroup 
SU(3) of G 2 • Since G2 has only real representations, 25 
only the real representations of SU(3) can occur in the 
representations of G 2 • For example, in the seven
dimensional representations of G 2' the only nontrivial 
real representation of SU(3) that can occur is the 6-
dimensional representation 3 EB 3. This six-dimensional 
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representation can be constructed from Gell-Mann's 
matrices as follows: 

A(i) = 02 0 ~1 = - i(~24 - ~51)' 

A(~) = 1 2 0 X2 = i(~54 - ~12)' 

A<~) = °2 0 X3 = - i(~14 - ~25)' 

A(~) = °2 0 X4 = - i(~1S - ~43)' 

A(~) = 12 0 X5 = - i(~4S - ~31)' 

A<~) = °2 0 Xs = - i(~35 - ~S2)' 

A(~) = 12 0 X7 = i(~65 - ~23)' 

-i 
A(~) = °2 0 X8 = .,[3 (~14 + ~25 - 2~3S)' (5.1) 

where 0 denotes the direct product of matrices and X a 
are the Gell-Mann's X matrices and 02 is the Pauli ma
trix 

(
0 - i) 

°2 = i 0 and 

and ~mn are the 6 x 6 matrix representation of the 
generators J mn of SO(6). This construction shows clear
ly that A (~) can be imbedded into the seven-dimensional 
representations of G2 as the representations of the 
generators Fa' 

G2 also has an SU(2) x SU(2) subgroup. The SU(2) x 
SU(2) subgroup involving the isospin subgroup of SU(3) 
is generated by Fl'F2 ,F3 and Ml'M2 ,M3 

[FpFj] = 2iE ijkFk" i,j,k = 1,2,3, 

[FpMj] = 0, [Mi,Mj] = (2i/.,[3)E ijkM k. (5.2) 

SU(2) x SU(2) subgroup of G2 arises from the fact that 
octonions can be constructed from two quaternions. 2S 

The SU(3) subgroup can be imbedded in G 2 in seven 
different ways and for each imbedding of SU(3) there 
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are three different imbeddings of SU(2) x SU(2) involving 
I, U, V spin subgroup of SU(3). 

Now consider the seven-dimensional action of Gi on 
the octonion units e A as the automorphism action. Then 
under the SU(3) subgroup, six of the basis elements e A 

transform like the six-dimensional real representation 
of SU(3) (3 EEl 3) and the seventh element is an SU(3) 
scalar. Under SU(2) x SD(2), four of the elements e A 

transform like the (1/2, 1/2) representations and the 
remaining three transform as (0, 1) representations. 

6. SPLIT OCTONIONS AND SPLIT G2 

Above we have considered the automorphism group 
of real octonions with basis 1, eA' We saw that if we 
denote tire parameters corresponding to the generators 
F A and MA by I A and .,[3m A and the seven-dimensional 
representation of these generators by A (1) and 1l(1) then 
the most general automorphism of real octonions are 
given by the transformation 

where 

e 1 

e2 

e3 

[e] = e4 

e5 

e s 
e7 

X is given explicitly by 

0 - (f2 + m 2)- (f5 + m 5) (»1:3 - 13)- (f 1 + m 1) (m4 - 14) 2ms 

(f2 + m2) 0 -(f7+ m7) (m 1 - 1 1) (f3 + m3)- (fs + ms) 2m4 

(f5 +m5) (f7 + m7) 0 - (f4 +m4) (ms-/s ) - 2»1:3 2m1 

X= (f3 - »1:3) (f1 - m 1) (f4 + m 4) 0 (m2 - 1 2) (ms - Is) 2m7 

(f1 + m 1)- (/3 + »1:3) (fs - ms) (f2- m 2) 0 (m7 - 17)- 2m5 

(f4 - m4) (fs +ms) 2~ (/5 - m5) (h - m7) 0 2m2 

- 2ms - 2m4 - 2m1 -2~ 2m5 - 2m2 0 

xt=-X 

If we transform the real basis [e] into what we shall call the split basis [d] where 

[d] = 

~(e1 + ie 4) 

~(e2 + ie5) 

~(e3 + ie s) 

~(e1 - ie 4) 

~(e2 - ie 5) 

~(e3 - ie s) 

(i/ ,fi)e7 

J. Math. Phys., Vol. 14, No. 11, November 1'973 

then the automorphisms are generated by the mapping 

[d] -) [d'] = eiZ[d] (6.2) 



                                                                                                                                    

1656 M. Gunaydin and F. Gursey: Quark structure and octonions 1656 

where Z is 

(f4+if5) 0 -(m 1-im 2) (m4+im 5) --.f2(m S+im 7) 

Z= 

(f3---m 3) 

(f Cif2) 

(fCif5) 

(f 1 +if 2) 

-(f3+m 3) 

(fs-if7) 

(m 1+im 2) 

o 

(fs+if7) (m l-im 2) 0 -(m 6-im 7) --.f2(mCim 5) 

2m3 -(m4+im 5) (ms-im 7) 0 -../2 (m 1 +im 2) 
o -(m4-im 5) -(h---m 3) -(fcif2) -(fCif5) -../2 (m 6-im 7) 

-(m 1+im2) (ms+im 7) -if 1+if2) (f3+m 3) -(fs-if7) -../2(m4+im 5) 

(m4-im 5) -(m S+im 7) 0 -(f4+if5) -(fs+if7) - 2m 3 --.f2 (m c im 2) 

--.f2 (m s-im 7) --.f2 (m 4 +im 5) --.f2 (m C im 2) --.f2(m S+im 7) --.f2(mCim 5) --.f2 (m 1 +im 2) 0 

and Z can be written in the form 

where 

(

U3 

Z= 0 

x* 

ot x) 
- U~ xt , 

X 0 

(

(f3 - m3)(fl + if2)(f4' + if5) ~ 
U3 = (f 1 - if2) - (f3 + ~)(fs + if7) 

(f4 - if5)(fs - if7) 2m 3 

( 

0 (m1 + im2) - (m4 - im5») 
o = - (m1 + im2) 0 (ms + i~) , 

(m4 - im5) - (ms + im7) 0 

x = - ../2[(ms + im7)(m4 - im5)(m1 + im2)] 

and 0ij = - (l/../2)e ijkx k 

zt = Z, 

Note that U3 and 0 are the three-dimensional repre
sentations of the Lie algebras of SU(3) and complex 
SO(3). 

If we further split the identity and consider the split 
octonions with basis ulu2u3uoutu~u~u~, defined above, 
then the automorphism group G 2 will act on this basis 
by an 8-dimensional reducible representation. 

G 2: [s] --? [s '] = e iY [s], [s] = 

U1 

u 2 

u3 

Uo 
ut 
u~ 

u~ 

u* 

(6.3) 

i,j,k = 1,2,3. where Y is given explicitly as ____________________________________________ ~I 

Y= 

(f 3---m 3) (f 1+if2) (f4+if5) 

(lcif2) -(f3+m 3) (I s+i/7) 

(/cif5) (I s-i/7) 2m3 

-(ms-im 7) -(m4+im 5) -(mCim 2) 

0 -(m l+im 2) -(m4-im 5) 

-(m 1+im 2) 0 (ms+im 7) 

(m4-im 5) -(m S+im 7) 0 

(m S-im 7) (m 4+im 5) (mCim 2) 

and Y can be written in the form 

Y= 
[ 

U3 XT/..f2 
x*/..f2 0 

o xt /..f2 
- x*/..f2 0 

or alternatively as 

y=(D -E*\ 
E -D*)' 

where 

Ot - XT/..fI] 
x/..f2 0 

- U~ - xt /..f2 
-x/..f2 0 

-(m S+im7) 

-(m4-im 5) 

-(m 1+im 2) 

0 

-(mS-im 7) 

-(m4+im 5) 

-(mCim 2) 

0 

D = ( U3 XT/..fI) 
x*/..f2 0 ' ( 

0 xt/..(2) 
E = _ x* /..f2 0 • 
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0 -(mCim 2) (m4+ im 5) (m S+im7) 

(mCim 2) 0 -(m6-im 7) (m4-im 5) 

-(m4+im 5) (m6-im 7) 0 (m 1+im2) 

-(ms+im 7) -(m4-im 5) -(m 1+im2) 0 

-(f3---m 3) -(lcif2) -(/cif5) (m S-im7) 

-(f 1+i/2) (f3+m 3) -(f6-if7) (m4+im 5) 

-(f4+if5) -(/6+i/7) - 2m 3 (m Cim2) 

(m6+im 7) (mCim 5) (m l+im 2) 0 

yt = Y, 

Note that the matrices D and E are not independent. 
D involves all the parameters of E. Keeping this point 
in mind, we see that Ee complex £SO(4), De£SU(4). 
Matrices E close under the Lie product. Matrices D 
need one more generator to close under Lie product to 
form the four-dimensional representation of the Lie 
algebra of SU(4). 

The above form of G2 as the automorphism group of 
split octonions is called the split G 2 • Under the SU(3) 
subgroup of split G2 leaving U o and Uo invariant, the 
three split octonions (u 1 ' U2' u3 ) transform like a unitary 
triplet (quarks) and the complex conjugate octoniop.s 
(ut, u~, u~) transform like a unitary antitriplet (anti
quarks). This property of split octonions is physically 
very important and plays a crucial role in obtaining a 
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quark structure from the octonionic representations of 
Poincare group. 14 

7. QUARK STRUCTURE IN THE SPLIT BASIS 

To see another physically interesting property of 
split G2 let us define the following basis for its Lie 
algebra27: 

E12 = ~(F1 + iF2), E21 = ~(F1 - iF2), 

E 13 = ~(F4 + iF5), E31 = ~(F4 - iF5), 

E 23 = ~(F6 + iF7 ), E32 = ~(F6 - iF7 ), 

F3 = (Ell - E 22), Fs = (1/.J3)(E ll + E 22 - 2E33 ), (7.1) 

Q 1 = ~(M6 + iM7 ), Ql = ~(M6 - iM7 ), 

Q 2 = ~(M4 - iM5 ), Q~ = ~(M4 + iM5 ), 

Q3 = ~(M1 + iM2), Qj = ~(M1 - iM2), 

where the expreSSions for A3 and As are purely formal 
at this point and will be explained shortly. In this basis 
commutation relations of split G 2 have the form: 

[Qp Qj ] = - (2/.J3)4: ijk QZ, 

[Qi' Q]1 = TiP i,j = 1,2,3, 

[Eii,Qk] = 6jk Qt, 

[Tw T jj ] = 0, [E ij , E it ] = (Tit - Tn), 
(7.2) 

[T tp E ij ] = E ij , [Tjj' E tj ] = - E ii , 

[Eij,Ejk]=Elln [Eji,Ekj]=-Eki 

where T ii is defined as 

and 

i ". j, 

Tll = ~F3 + (l/2.J3)Fs = i(2E ll - E22 - E 33 ), 

T22 = -~F3 + (1/2-v3)F8 =i(-E ll+ 2E22 - E 33 ), 

T33 = - (1/.J3)Fs = i(- Ell - E22 + 2E33 ). (7.3) 

The generators T ij form the subalgebra SU(3). The 
generators F3 and Fs form a Cartan subalgebra of both 
SU(3) and G 2 • If we assign quantum numbers to the 
generators of split G 2 , i.e., to its adjoint representation, 
using as the generators of third component of isospin 
and hypercharge the generators 13 = ~F and Y = (1/f3)F8 , 

we find that three quarks, three antiquarks, and eight 
mesons can be imbedded in the adjoint representation of 
split G 2 , Le., we can have the correspondence 

Q 1 ~ p quark, 

Q 2 ~ n quark, 

Q 3 ++ A quark, 

E12 ++ 71+ (or p+), 

E 13 ~ K+ (K*+), 

E 23 ++ KO (K*O), 

A3 ~ 71 0 (pO), 

Ql~P, 

Q~~ n 
Qj ++ X 

E 21 ++ 71- (or p-), 

E31 ~ K- (K*-), 

E32~ j{O (K*O), 

As ~ 1) (w s)' 

'~his identification agrees with Gell-Mann's quark 
model in the assignment of the quantum numbers 13 and 
Y and differs from it in the assignment of baryon num
ber. If one uses the generator N3 of SO(7) as the baryon 
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number generator, one gets the result that mesons are 
assigned zero baryon number as they must be but that 
the generators Q t (~ quarks) and the generators QI 
(_ antiquarks) do not have well-defined baryon num
bers.28 These (pseudo-quark) generators Q i have the 
interesting property that they generate the (anti
pseudo-quarks) QI under commutation, Le., 

[Qi' Qj ] = - (2/.J3)4: iik Q: 

and the SU(3) subalgebra (mesons) under Lie triple 
product, Le. 

8. AN OCTONIONIC REPRESENTATION OF SPLIT G2 

The split octonions 

transform as the three-dimensional irreducible repre
sentation of the SU(3) subgroup of split G 2 • But the ele
ments 

do not form a four-dimensional irreducible representa
tion of split G2 • In fact the lowest nontrivial representa
tion of G2 is seven dimensional. Yet the action of G2 on 
the basis 

[8] = C*) 
is completely defined by its action on u, Le., if 

U ~u' 
G 2 : , 

u* ~ (u*)' 
then 

(u*)' = (u')*. 

The action of G 2 generators on U can be represented 
by multiplication with octonion units in the following 
compact form: 

E"u ~ u,(uJu), u {~). ',j ~ 1,2,3, 

QiU = - (1/.J3)uu t + (1/.J3)(u iu O)u = - (1/.J3)uu i , 

Qlu = - (l/.J3)uu1 + (1/.J3)(u7uo)u = - (1/.j3)[u,u~]. 
with ' 

F3u = (Ell - E 22)u = u 1(utu ) - U2(U~U), 

Fsu = (l/.J3)(E ll + E22 - 2E33 )u 

= (1/.J3){u 1(uiu ) + u2(u~u) - 2u3 (uju)}, 

which justifies the formal expressions for F3 and Fs 
given above. Thus the above form of the Lie algebra 
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action of G2 generates an octonionic representation 
of split £G 2' The automorphism group of real oct onions 
can also be shown in this form because a real octonion 

can be written as 

<I> = 2 Re{(¢o - i¢7)i(1 + ie 7 ) 

+ (cPI - i¢4)i(e 1 + ie 4) 

+ (¢2 - i¢5)i(e 2 + ie 5) 

+ (¢3 - i¢6)i(e3 + ie 6)}, 

where Re refers to the real part with respect to the 
complex unit i. Then 

where 

Therefore, the action of AutO on e A is completely de
fined by its action on u. 

9. 8 x 8 MATRIX FORMULATION OF THE CAYLEY 
ALGEBRA 

In Appendix D, we give two constructions of Cayley 
algebra in terms of 3 x 3 A-matrices and 4 x 4 y
matrices. In this section, we shall study the 8 x 8 ma
trix construction of octonions. Consider the column 
matrix 

[s]=[UJ 
u* 

of split octonions. Define the conjugate matrix [s]t as 
[s]t = [S]H 

= (- u!, - u~, - u~, uo' - U l' - U2' - U3' U~), 

where the overbar denotes octonion conjugation, * de
notes complex conjugation, and T is the usual trans
position. Then the product [s ][s]t can be written in the 
form 

A = 1, ... ,7, (9.1) 

where r A are 8 x 8 matrices given by: 

r 1 = - 01 @ 01 @ 02 = - T 1P 102' 

r 2 = - 01 @ 02 @ 1 = - T1P2' 

r3 = 01 @ 03 @ 02 = T1P302' 

r 4 = 02@ 02@ 01 = T2P2 0 1' 

r5 = - 02 @ °2 18' 03 = - T2P203' 

r6 = 02@ I@ 02= T 20 2' 

r 7 =-03@1@1=-T3 

(18' denotes direct product of the Pauli matrices 
01> 02' 03' I), 
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where we have defined 

1 @ I @ OJ = OJ, 

l@oj@l=pj, 

a j @ 118' 1= T i , 
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and chosen a representation in which r l' r 2' r 3 are 
imaginary and r 4' r 5' r 6' r 7 are real. These seven 
matrices r A are Hermitian and satisfy the anticommu
tation relations 

(9.3) 

Now number the rows of the column vector [s] from 
1 to 8 and define a mapping L ". on [s] as the mapping 
induced by multiplication from' the left by the element 
u j .29 Then a simple calculation gives the result that 

L
(8)+L(8) L(8) *=L(8)=~ '<" +~ ~ 
U1 u1 "1+ U1 e1 ""18-""27 ""36-""45, 

(8) (8) - -
L *=L· =E81 +E 18 ul- u 1 le 4 

- £54 - £45 - £36 - £63 + £27 + E72 , 

(8) (8) - - - -
L"2+U: = Le 2 = l:28 - l:46 + l:53 + l:17' 

(8) (8) - -
L"2-": = L jes = - E71 - E17 

L (8) * = L(8) = ~ ~ ~ + ~ "+,, e ""61-""52-""47 ""38' 3 3 3 

(9.4) 

(8) (8) - -
L" _". = Lje = E61 + E 16 3 3 6 

+ E33 + E44 - E55 - E66 - E77 - E 88 , 

where E ij are the 8 x 8 matrix units and ~ab = Eab - E b a 

Comparing the matrices r A with the mappings L e 

considered as matrices acting on the basiS [s] we A 

have 

(9.5) 

From these equalities, the anticommutation relations 
of r A follow automatically, since 

which in turn follows from the identity 

01(0203) + 02(0103) = (0102 + 0201)03' 

(9.6) 

01> 02' 03 E ° (9.7) 

for octonions. 

Now define the matrices r AB as 

r AB = - rBA , (9.8) 

Twenty-one matrices r AB form the Lie algebra of Spin 
(7) and r AB Gl r A form the Lie algebra of SO(8). 



                                                                                                                                    

1659 M. Giinaydin and F. Giirsey: Quark structure and octonions 

Having constructed the matrices r A and r AB from the 
spinor [s], we can forget about the octonionic character of 
[s] and consider an eight-component spinor \}I. Then 

transform like a vector under SO(8). Under the subgroup 
Spin (7), \}IT\}I is a scalar and \}ITr A \}I = V A is a vector. 
To characterize G 2 , we need one more condition in addi
tion to the requirement that \}IT\}I be a scalar. Now G 2 
is the automorphism group of octonions and it leaves the 
identity invariant. Therefore we would expect the G 2 

subgroup of SO(7) to leave (\}I! + \}I~)(\}I4 + \}Is) invariant, 
since (\}I4 + \}Is) corresponds to the identity of the oc
tonions in the nonoctonionic formulation considered here. 
Thus, under G 2 both \}IT\}I and \}ITK\}I are scalars, where 
K is the matrix 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

K 
0 0 1 0 0 0 1 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

o 0 0 0 0 0 0 

o 0 1 000 1 

In fact, the assertion that \}ITK\}I is a scalar under G2 
can be rigorously proved by showing that only those 
linear combinations of the generators r AB of Spin (7) 
that belong to G 2 commute with the matrix K. To do 
this it is convenient to use the following expression for 
K 

K = t[l- i(I/3 !)a ABCrArBr c], A, B, C, = 1, ... ,7, 
(9.9) 

where a ABC is a totally antisymmetric tensor and satis
fies 

a ABC = 1 for ABC = 123, 246, 435, 516, 572,471, 673. 

The matrix K is related to the octonion conjugation 
matrix OC defined by Oc [s] = [8] as 

OC = K - 1 or K = 1 + OC. 

Therefore the conditions that \}ITK\}I be a scalar is 
equivalent to the condition that \}IT OC\}I be a scalar. 

The conditions that characterize G 2 , i.e., that \}IT\}I and 
\}ITK\}I be invariant, are equivalent to saying that G2 is 
the common subgroup of SO(7) and Spin (7),30 i.e., 

G2 = Spin (7) n SO(7). 

Above we showed that the matrices r A correspond to 
the left multiplication by octonion units e A acting on [s]. 
This does not mean that e A can be represented by ma
trices r A to form a Cayley algebra under the usual 
matrix multiplication. To get a Cayley algebra from 
r A' we define the product of two r matrices as 

r A orB = MrA, r B} + M[rA, r B]' M} + rAMr B - r BMr A' 

(9.10) 

where 

M = K - H = - ti(l/3 !)aABCr Ar B r C' 
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which gives 

Hence defining the multiplication by a multiple C of 
the identity 1 as multiplication by the scalar c, we get 
a Cayley algebra with basis 

e A == - irA' 1 == 1, 

(- irA) 0 (- ir B) = - 0AB + aABc (- ir C). (9.11) 

10. IMBEDDING IN SO(7) AND SO(8) 

In the above, we have decomposed the Lie algebra of 
SO(7) as 

SO(7) = FA e:; MA e:; N A, 

where FA e:; M A generate the subgroup G 2' 

The 8-dimensional representation of G 2 as the auto
morphism group of octonions acting on the basis 

will induce an 8-dimensional spinor representation of 
SO(7): In fact, after some algebra, one finds that the 
action of N A on [s] can be represented as 

(10.1) 

where L. and R. are left and right multiplications by 
A A 

the element e A, respectively. ExpliCit matrix form of 
L. was given above. For the R. we have 

A A 

R~S) = ~27 + ~5S + ~14 + ~63' 
1 

R~S) = - i{(E 14 + E 41 ) 
4 

+ (E36 + E 63 ) - (E5S + E S5 ) - (E27 + E 72 )}, 

R~~) = - i{(E I7 + E71 ) (10.2) 

+ (E24 + E 42) - (E35 + E 53 ) - (E6S + E S6 )}' 

RW = - i{(E25 + E 52 ) 

+ (E34 + E 43 ) - (E 16 + E 61) - (E7S + E S7 )}' 

R~~) = - i{(E44 + E55 

+ E66 + E 77 ) - (Ell + E22 + E33 + Ess)}· 

We have shown that the 8 x 8 matrices r A and r AB 
form an eight-dimensional representation of the Lie 
algebra of SO(8). Since r correspond to the left multi
plication by e A acting on [s], we have the result that the 
eight-dimensional representation of £SO(8) can also be 
decomposed as: 
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where ~(~) = h(L~8) + R~8» corresponding to the genera-
tor A A 

zA=-h(L e +Re )· 
A A 

Since the group SO(8) has rank four, its Cartan sub
algebra will be four dimensional. One can redefine the 
generators of SO(8) such that F3,M3, N 3 , and Z3 form a 
Cartan subalgebra. 

If we take 13 = iF3, Y 3 = - (1/~)M3' B = - tN3 , 
tz 3 as the Cartan subalgebra generators, we can assign 
the following quantum numbers to the basis elements: 

13 Y3 B tZ3 

1 1 1 U 1 2 "3 "3 0 
u* 

1 1 1 0 1 -2 -"3 -"3 
1 1 1 0 u 2 -2 "3 "3 

u* 
1 1 1 0 2 2 -"3 -"3 

U3 0 2 1 0 -"3 "3 
u* 0 +~ 1 0 3 3 -"3 
uo 0 0 0 -1 
u~ 0 0 0 1 

Therefore, under the correspondence 

(u l' u 2, u 3 ) ~ (p, n, A) quarks 

(ut, u2, uj) ++ (p, n, ~) antiquarks 

(u o, u~) ++ (core, anticore) 

we have the result that 13 , Y 3' and B act like the genera
tors of third component of isospin, hypercharge, and 
baryon number. Subscript 3 in Y 3 refers to the fact that 
within G 2 , Y is the generator of the third component of 
an SU(2) subgroup just as 13 is. 

11. REDUCTION WITH RESPECT TO THE 
SU(2) x SU(2) [I-SPIN-G-SPINJ SUBGROUP OF G2 

The generators Ii = Fi , G i = ~Mi' i = 1, 2, 3 form 
an SU(2) x SU(2) subalgebra of .£G 2 : 

i,j,k = 1,2,3. 
(11. 1) 

Ii is the isospin subalgebra of the SU(3) sub algebra of 
.£G 2 annihilating the basis element e7 • Now the spinors 

correspond to isospin doublets and the elements u3 , uj, 
(1/ ,f2)ie 7 are isospin scalars. 

Consider the infinitesimal group action generated by 
G j 

G: 1/1 ~ 1/1' = (1 - im 3 )1/1- (m 2 + im 1)1/1 G, 

I/IG' = (m 2 - iml)1/I + (1 + im 3)I/IG, 

where 1/1 G is the G parity conjugate spinor defined by 

I/IG = i721/1* and 72 = (; -~). 
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Therefore under the G-spin subgroup (generated by 
G 1) of G 2 the spinor 1/1 and 1/1 G form a G- spin doublet 
and transform as 

(11. 2) 

where 

Similarly we find that 

forms a G-spin triplet which transforms infinitesimally 
as 

~ 
1 + 2im 3 - i,f2 (m 1 + im 2) 

G : ¢ ~ ¢' = - i,f2 (m 1 - im 2) 1 

o - i.Ja(ml- im2) 

the global form of which is 

( 

a2 ,f2ab 

G: ¢ ~ ¢ '= -,f2 ab* 1 a 12 - 1 b 12 b

2 

) ,f2 a*b ¢. (11. 3) 

b*2 - .../2a*b* a*2 

An important property of G-spin is that its third com
ponent is proportional to hypercharge Y, i.e., 

and hence it should properly be called hyper charge spin. 
This hypercharge-spin subgroup of G2 commutes with 
the isospin subgroup generated by F 1> F 2' F3 • The iso
spin and hyperchar.ge spin groups together generate a 
four-dimensional rotation group SU(2) x SU(2) which 
has been considered before31 as applied to an isotopiC 
doublet such as the nucleon or the p and n quarks. The 
multiplets (u 1 , u 2 , u2, - ut) and (u 3 , (ie 7 /,f2), uj) form 
the (1/2, 1/2) and (0,1) representations of the subgroup 
SU(2) ® SU(2) y, respectively. The SU(3) singlet 
(ie 7 /Ji) is not an hypercharge spin Singlet. It trans
forms like- the third component of an hypercharge trip
let. We shall call it the vacuan v. Therefore the lowest
dimensional representation of G2 has the root system 
shown is Fig. 3. Above we defined the G-parity conju
gate spinor 1/1 G of an isospin doublet 1/1 as 

I/IG = Ce iTf12 1/1, 

where 12 is the second component of isospin and C is 
charge conjugation which in our case is taken as com
plex conjugation. We will generalize this G-parity con
cept to other charge space SU(2) groups as follows: 
Write the above equation as 

] -
>T.G _ C iW]2.I, • "'] - e '1"], (11. 3a) 
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-I A 

then for U and V spins we can define 

U I/Ig = Cei'rrU2 1/1 u 

."Gv _ C ;1fV2 ." 
'l'V - e 'l'V 

FIG. 3. 

(11. 3b) 

(11. 3c) 

Then under the SU(2) U 0 SU(2) GU subgroup of Gz 
generated by 

U I = ~Fs, Uz = ~F7' 
U3 = i(- ..f3M3 - F3), 

Gf = (..f3/2)Ms, Gq = (..f3/2)M7 , 

Gf = (,,~/ 4)C~ F3 -M3) . 

The spin or 

(11. 4a) 

transforms like the (1/2, 1/2) representation, where 

and the spinor 

will transform as the (0, 1) representation. Same thing 
applies for the SU(2) v 0 SU(2) G v subgroup generated by 

VI = ~F4' Vz = ~F5' 
V3 = i(F3 - ..f3M3), 

Gf = (..f3/2)M4 , G! = (..f3/2)M5 , 
(11. 4b) 

G ~ = (..f3/4)(M3 + ..f3F3 ), (11.4c) 

except we have to replace 1/1 U by 
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and CPu by 

Hence, we have the result that just as the group SU(3) 
contains three overlapping SU(2) groups corresponding 
to I, U, V spins, the group G z contains three overlapping 
SU(2) x SU(2) G groups corresponding to I, U, V spins to
gether with their generalized G-parity extensions. We 
shall call the SU(2)G groups corresponding to I, U, V 
spins, the hypercharge spin, charge spin, and hypocharge 
spin groups, respectively. Under the SU(2) x SU(2) G sub
group, the adjoint representation of Gz decomposes as 

14 = (1,0) Ef:l (0, 1) Ef:l (1/2, 3/2). 

So far we have considered the decomposition of 
£SO(8) in terms of seven anticommutating matrices 
r A, which correspond to left multiplication by the basis 
el.ements e A of octonions acting on the basis 

A more consistent approach is to consider matrices 
corresponding to multiplication by the split octonions: 
Since 

L". = LI1Z(e.+ie. ) = ~(Le. + iL e.), i = 1,2,3, 
, '1+3 , 1+3 

we have 

(11. 5) 

One can also change the basis on which the octonion 
units act and consider the real octonion basis on which 
real or split octonions may act. In any case, octonion 
multiplication operators La or Ra, a E 0 is uniquely 
defined and choosing different bases on which they can 
act changes their matrix representations. 

12. LIE MULTIPLICATION ALGEBRA OF OCTONIONS 
AND THE PRINCIPLE OF TRIALITY 

A derivation D of an algebra A is defined as a linear 
transformation satisfying the property: 

D(xy) = (Dx)y + x(Dy) for all x,Y EA. (12. 1) 

Derivations of an algebra A form a Lie algebra under 
Lie product, Le., 

andforallD;,Dj,D k EDerA, 

[D;, [Dj,DkJJ + [Dk' [D;,Dj]] + [Dj' [Dk,D;J] = 0, 

Jacobi identity. 
Derivation algebra of an algebra A is isomorphic to 

the Lie algebra of the automorphism group of A,32 i.e., 
if DE Der A 

D(xy) = (Dx)y + x(Dy);¢o eD(xy) == (eDx)(eDy). 
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Therefore the derivation (Lie) algebra of octonions 
is isomorphic to the Lie algebra of G2 • Lie multiplica
tion algebra of the octonions is defined as the Lie alge
bra with elements: 

£MO = Der 0 EB Loo EB Roo' 

where Lo and Ro correspond to multiplication from 
o 0 

the left and the right by traceless (or imaginary) octo
nion units. Since the octonions are not associative left 
and right multiplications do not commute. As was shown 
above, the Lie multiplication algebra of octonions is iso
morphic to the Lie algebra of the group 80(8). 

£80(8) = FA Ell MA EB NA EB ZA' (12.2) 

where 

DerOS'FAEllMA· 

where 

~ 1 = - m6 + ~(ns - 2 6 ), ~4 = m5 - ~(n5 + 2 5 ), 

~2=-m7-1(n7+z7)' ~5=-m1+~(n1-z1)' 

~3=-m4+~(n4-z4)' ~S=-m2-~(n2+22)' 

Matrices U 4 close under commutation and form the 
four-dimensional representation of £U(4). 

The matrices V are antisymmetric. 

V}lll = - V lI!, and form the Lie algebra of complex 
80(4): 

V 12 = - (m 1 + n 1) + i(m 2 - n 2)' 

V 13 = (m4 + n 4) + i(m5 + n 5), 

V 14 = [m 6 - ~(ns + 2 6)] + i[m 7 + ~(n7 - 2 7)], 

V 23 = - (m6 + ns) + i(m7 - n 7 ), 

V 24 = [m4 - ~(n4 + 24)] - i[m5 - ~(n5 - 2 5)], 

V34 = [m 1 - ~(n1 + 2 1)] + i[m2 + ~(n2 - 2 2)], 

Denoting U4 as U, we have that U and V can be de
composed as 

U = U c2 EB USO(S)IC2 

L = LC2 EB L SO(S)/C2' 

V = V c2 EB V SO(S) /C2 

(12.4) 

where EB refers to vector space direct sum and V G , U G 
involve only the parameters fA and m A and USO(S)Jc 2 

and VSO(S)/G involve only n A and 2 A. Below we will
2 

construct th~ £80(8) matrices that are in local triality 
with each other (see Appendix C for the principle of 
triaUty.) The principle of local triality states that for a 
given matrix TL E £80(8) acting on the 8-dimensional 
space of octonions and which is skew with respect to the 
natural bilinear form (x, y) defined over the octonions, 
there exist uniquely determined matrices TR and TP 
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The usual real octonionic norm is invariant under the 
group 80(8). Denoting the parameters corresponding to 
the generators A (~), /l(~), II(~), ~(~) by fA' mA' n A, 2 A' we 
can represent the action of 80(8) on the split octonion 
basis [s] by 

80(8): [s] -+ eiL[s], [s] = [:.J. u {) 

L=(U V) 
vt -Ul' 

where 

(12.3) 

belonging to the Lie algebra of 80(8) (Le., which are 
skew with respect to the norm form) such that 

TP(xy) = (TIx)y + x(TRy), x,y EO, 

TP, TL, TR E £80(8). (12.5) 

Decomposing TP and TR and TL as above, 

TL = T~2 EB Tto(S)/G2' 

TR = T~2 Ell T~0(S)/C2' 

TP = Tb Ell Tfo(s)IC , 
2 2 

we have 

Tb2(xy) + Tfo(S)/C2(XY) = (T~2X)Y + (Tto(S)/G2
X)Y 

+ X(T~2Y) + x(T~0(S)/C2Y)' 

Now since G 2 is the automorphism group of octonions, 
its Lie algebra will be the derivation algebra of octonions 
satisfying 

D(xy) == (Dx)y + x(Dy), D E Lie algebra of G2 = £G 2. 

Hence it follows that 

D = Tb = T~ = T~ E £G 2. 
2 2 2 

In other words under the triality mappings 

£G 2 subalgebra of £80(8) remains fixed. If we let 

TL _ (USO (S)/C2 V SO(S)/G2) (12.6a) 
so(S)/G2 - vt U* ' SO(S)/G2 - SO(S)/C2 

TO, - (A SO(S)IC2 8 so (S)IC2 ) (12.6b) 0(S)IC2 - Bt A* ' SO(S)/c2 - SO(S)/G2 

TP _ (CSO(S)IC2 D SO(S)/G2) (12.6c) SO(S)/C2 - Dt C* ' so(S)/C2 - 50(S)/C2 
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o o 
o 
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o - n3 

[i(n4 - z,J + 1 i(n 5 -z5)] [t(n1 - ztl + i,i{riz - Z2)] 

( 

0 

(n 1 + in2) 

- (n4 + in 5) 

[i(n6 + Z6) - ii(n7 - Z7)] 

- (n 1 + in 2 ) 

o 
(n6 + in7) 

[1(n4 + Z4) - ii(n5 - ZJ] 

Then we find, after some calculation, 

o 

(n4 + in 5 ) 

- (n6 + in 7) 

o 
[i(n1 + ztl- 1i(n2 - Z2)] 

o 
o - (n 4 .:.. in 5 ) 

- [1(n6 + Z6) - 1i(n 7 - Z7)]) 

- [i(n4 + Z4) -ii(n5 - Zs)] . 

- [1(n 1 + Z 1) - ii(n 2 - Z 2)] 

o 
(12.7b) 

(12.7c) 

( 

i(n3 + Z3) 

A SO(S)/G2 = ~ 
- (n6 + in 7) 

1(n3 +Z3) 

- (n1 + in 2 ) 

- (n 6 - in 7) ) 

-(n
1
-in

2
) , 

- i(3n 3 - Z3) 

and 

[(n 1 +Z1) + i(n 2 - z 2)] 

o 
- [(n 6 + Z6) + i(n 7 -Z7)] 

[(n 4 -z 4)-i(n5 +Z5)] 

0 

i(n 3 - z3) 

0 

0 

- [(n 4 + Z4) + i(n5 - Z5)] 

[(n6 + Z6) + i(n7 - Z7)] 

o 
[(n1 - Z1) - i(n 2 + Z2)] 

- (n 4 - in 5) 

- [(n 6 - z6) - i(n7 + Z7)]) 

- [(n4 - z4) - i(n5 + Z5)] 

- [(n 1 - z 1) - i(n 2 + z 2)] , 

o 
(12.7d) 

0 i(n3 - z3) 

- (n, - in,) ) 

- (n 1 - in2) , 
(12.7e) 

- (n4 + in5) - (n 1 + in 2) - i(3n 3 + z3) 

[(n 1 - zl) + i(n2 + z2)] 

o 
- [(n6 - z6) + i(n7 + z7)] 

[(n4 + z4) - i(n5 - z5)] 

We had shown earlier that the action of .cG 2 ~ DerO 
on the octonion units can be represented by octonion 
multiplication and the action on the split octonion basis 

is uniquely determined by the action on u. Similarly, 
the action of SO(8) on split octonions can be represented 
by octonion multiplication and the action on u uniquely 
determines the action on [s]. Below we give the ex
pressions for the action of .cSO(8)/G 2 matrices that 
are in triality with each other in terms of octonion multi
plication acting on u: 
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- [(n4 - z4) + i(n5 + z5)] 

[ens - z6) + i(n7 + Z7)] 

o 
[(n1 + ZI) - i(n2 - Z2)] 

- [(n6 + Z6) - i(n7 - Z7)]) 

- [(n4 + Z4) - i(ns - Z5)] 

- [(n1 + ZI) ~ i(n2 - z2)] 

TfO(S)/G2U = inl([U~,U] + (u + uU6)U3> 

- iin2([u~,u]- (u + UU6)U3> 

- n 3 (uu6) 

+ in4([U~' u] + (u + UU6)U 2) 

- hn5([u~, u] - (u + UU6)U 2> 

+ in 6([ui,U] + (u + UU~)Ul) 
- iin 7([ ui, u] - (u + Uu~)u 1) 

+ z 1i({u~, U} - (UU o)U3) 

- iz 2i (- {u~, U} - (UU O)U3) 

- Z3(UUO) 

+ z4i({u~, U} - (UU O)U 2) 

- iZsH- {U~, U} - (UU o)U 2) 

+ Z61({ui,u}- (UU O)U 1) 

- iz 7 i(- {ui, U} - (UUo)U 1)' 

(12.7f) 

(12.8) 
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T90(S)/G2U = n1(uu~ + iu~u - (u - iuu~)u3) 

- in2(uu~ + iu~u + (u - iuu~)u3) 

+ in3(uu~) -1n3(uu O) 

+ n4(uu~ + iu~u - (u - iUU~)U2) 

- in5(uu~ + iu~u + (u - iuu~)u2) 

+ n s(uu! + iu!u - (u - iuu~)u 1) 

- in7(uu! + iu!u + (u - iuu~)u1) 

+ Z 1i(- (uu6)u3 - uju) (12.9) 

- iz 2i (- (uu6)u3 + uju) 

+ iZ3u 

+ z 4i(- (uu~)U2 - u~u) 

- iz 5 i(- (uU6)u2 + u~u) 

+ zsi(- (uu~)u1 - u!u) 

- iZ7H- (uu~)U1 + u!u), 

T p - ( * + 1 * ( 1 *) ) SO(S)/G2U - n1 UU3 2U3u - U - 2UUo u3 
- in2(uuj + iuju + (u - iuu~)U3) 

+ n3 (iu - 2uu~) 

+ n4(uu~ + iu~u - (u - iuu~)u2) 

- in5(uu~ + iu~u + (u - iuu~)u2) 

+ ns(uu! + iu!u - (u - iuu~)u1) 

- in7(uu! + iu!u + (u - ~uu~)u1) 

+ Z 1~«uu~)u3 + uju) (12.10) 

- iz 2~«UU~)u3 - uju) 

- iZ3u 

+ z4i«uu~)u2 + u~u) 
- iZ5~«uu~)U2 - u~u) 

+ zs~«uu~)u1 + uiu) 

- iz7H(uu~)u1 - u!u) 
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APPENDIX A: STRUCTURE CONSTANTS OF G2 

Consider the basis of £G 2 given in Sec. 1 

£G 2 = FA EB M A' A = 1, ... ,7. 

As was pOinted out in Sec. 2, the generators FA and 
Fs = - M3 form the SU(3) subalgebra of £G 2, i.e., 

(A1) 

where fabc are the totally antisymmetric structure 
constants of Gell-Mann, the nonzero elements of which 
are given in Table A1. 

Now 

£G2=FaEBM., a=1,2, ... ,8, 

ms = s = 1, 2, 4, 5, 6, 7, 

F a ~ £SU(3). 
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TABLE AI. 

abc 

123 
147 
156 
246 

257 
345 
367 
458 
678 

TABLE A2. 

a msmt 

1 m 4m 7 
1 msms 
2 m 4m 6 
2 mSm7 

3 m 4m S 
3 mSm7 
4 m 1m 7 
4 m 2m 6 

5 mlm S 
5 m 2m 7 
6 mlrn S 
6 m2m 4 

7 m 1m 4 
7 m 2m S 
8 m 4 m S 
8 m6m 7 
8 m 1m 2 

Camsmt 

1/2 
1/2 

- 1/2 
1/2 

1/2 
1/2 
1/2 

- 1/2 

- 1/2 
- 1/2 
- 1/2 
- 1/2 

- 1/2 
1/2 

- 1/2./3 
1/2~ 

-1 

TABLE A3. 

m 1m 4m 7 
mlmSmS 

m2m 4m 6 
m~5m7 

fabe 

1 
1 
"2 
1 

-2 
1 
2 
1 
2 
1 
2 
1 

-2 
~/2 
~/2 
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-1/~ 
1/~ 

-1/~ 
- 1/~ 

The structure constants of the form C abm vanish 
because F a form a subalgebra. Hence the r"emaining 
nonvanishing structure constants of G2 are of the form 

Cams"'t' a = 1, ... ,8, s,t,u = 1,2,4,5,6,7 

or of the form 

[Fa,FbJ = 2ifabc Fc' 

[Fa,MsJ = 2iC am m Mp (A2) 
s t 

[Ms,MtJ = 2i(Cm m aFa + Cm m 71LM .. , 
s t s t" 

where all the structure constants are totally antisym
metric. Below we list all the nonvanishing elements of 
Cam m and C m m m (Tables A2 and A3). 

s t s t .. 

APPENDIX B: ZORN'S VECTOR MATRICES 

A realization of the split octonion algebra is via the 
Zorn's vector matrices 

where a and b are scalars and x and yare 3-vectors, 
with the product defined as 

(a X) (C U) (ac + x-v 
y b v d = cy + bv + x x U 

x denotes the usual vector product. 

au + dx - Y x V). 
y.u + bd 

(B1) 

If the basis vectors of the three-dimensional space 
are e i , i = 1,2,3 with e i x e j = €ijkek and e i • ej = l'J ij , 

then we can relate the split octonions to the vector 
matrices; namely 
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(
0 - e i ) - u* o 0 - j, 

Octonion conjugation defined above induces a natural 
involution for the vector matrices, i.e., if 

_ (a - X) A- , 
y b 

A = ( b + X), 
-y a 

N(A) = AA = AA = (ab + X· y). (B2) 

APPENDIX C: PRINCIPLE OF TRIAlITY 

The usual octonionic norm is invariant under the 
group SO(8) or equivalently the bilinear form induced 
by the octonionic norm is skew with respect to the Lie 
algebra of SO(8), i.e., 

(x,y) = t(Xy + yx) 

then for T E £SO(8) 

(Tx,y) + (x, Ty) = 0 for all x,y EO 

(C1) 

(C2) 

For the elements D of the derivation algebra of oc
tonions we have 

D E DerO~£G2' 

D(xy) = (Dx)y + x(Dy). 

Integrated form of this (local) identity gives us the 
automorphisms of 0, Le., 

Or 

d(xy) = (dx)(dy) =:> dE G 2 • 

(C3) 

(C4) 

The principle of triality is nothing but a generalization 
of the identities (C3)-(4) and is unique to octonions.s 
According to the principle of local triality (PLT) it is 
possible to generalize identity (C3) to all the elements 
of the Lie multiplication algebra £SO(8). Namely, given 
an element TL E £SO(8) acting on the octonions there 
exist unique TR and TP E £50(8) such that 

(PLT) : (TLX)y + X(TRy ) = TP(xy) for allx,y EO. 
(C5) 

Just as it is possible to integrate the derivations of 
octonion algebra to get its automorphisms, one can also 
integrate the PL T to get the principle of global triality 
(PGT), which is a generalization of the concept of auto
morphism. According to the PGT, given t l E SO(8) acting 
on the octonions there exist tr and tP E SO(8), unique up 
to a Sign, such that3 3 

PGT: (tIX)(tTy) = tP(xy) for all x, YEO. (C6) 

Since the group SO( 8) is the "Lie multiplication group" 
of octonions (Le., that every action of SO(8) on 0 can be 
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represented by octonion multiplication), one can reformu
late the PGT as follows34 : 

Given d l E SO(8) d 2, d3 E SO(8) 

for all x, yEO, 

where the overbar denotes octonion conjugation. 

In this form of the PGT we have cyclic symmetry 
between dl,d 2 and d 3 , Le., 

(d lx)(d 2y) = d 3 (xy) 

implies 

(d 2x)(d3y) = dl(xy), 

(d3x)(d ly) = d 2 (xy). 

(C7a) 

(C7b) 

(C7c) 

Since given d l ,d2 , and d 3 are determined uniquely up to 
a sign, the subgroup of SO(8) x 50(8) x SO(8) consisting 
of elements which are in triality will form a twofold 
covering group of SO(8), Le., it will be isomorphic to 
Spin (8). The group SO(8) has the subgroup 50(7) and 
given t E SO(7) there exist t E 50(8) 

(tx)(ty) = t(xy) for allx,y EO (C8) 

then the elements t form the covering group Spin (7) of 
50(7). 

APPENDIX D: REALIZATIONS OF THE CAYLEY 
ALGEBRA IN TERMS OF GELL-MANN A MATRICES 
AND DIRAC'S 'Y-MATRICES 

1. The A -matrices 

We want to define a product between the A matrices 
of Gell-Mann such that they will form the nonassociative 
Cayley algebra. Since there are eight A matrices and 
seven imaginary octonion units e A' the product will be 
defined between seven of the A matrices and will involve 
the eighth A matrix. In view of the broken 5U(3), this 
eighth A matrix will be taken to be AS' The general form 
of the product consistent with octonion multiplication 
can be parameterized as follows: 

AA 0 AB = tfl Tr(AAAB)1 + tli Tr(As{AA' AB})1 

- (2/~)(B! + ~Y) Tr(As[AA,A B])1 

+ {a1 + ~(a + ~Y)AS' [AA,AB]} 

+ Y[{AS,AA},{AS,AB}J, (D1) 

where { , } and [ , ] denote antic om mutation and commu
tation, respectively. Then, for A = 1,2,3 we have 

no sum over A, 

and for A = 4, 5, 6, 7 

In addition, the oct onion multiplication imposes the 
conditions: 

a = - ~(2y/9), {3 = 15(2y/9)2, 

(D2) 

Ii = ~(2y/9)2. (D4) 

Hence, we get the result that the 3 x 3 matrices 
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i = 1,2,3, 

(D5) 

satisfy the octonion multiplication table of the imaginary 
units e A under the product" defined above and generate a 
Cayley algebra with identity being the scalar identity: 

(D6) 

An interesting property of this product is that the co
efficient multiplying the A matrices is different for dif
ferent isospin multiplets. 

2. The 'Y-matrices 

Let us define a product between 4 x 4 Hermitian 
matrices of the form: 

C = (y1 2 - iCJ'C). 
iCJ·d 61 2 

Such that they form a Cayley algebra. First, note 
that the matrix A can be written in terms of y matrices 
as: 
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A = t(a + (3) + t(a- (3)Y5 + t y5y ' (a - b)+ ty'(a+b), 

(D7) 
where y matrices are taken in the Weyl basis and the 
parameters a, (3, a, b are all real. 

Y4 = PI ® I, ')'5 = P3 ® I. (D8) 

To get a product which is not aSSOCiative, we are led 
to defining a new operation - over the 4 x 4 matrices: 

--' 

M = (a b) == (at b), 
cdc d t 

= t(1 + Y5)A tt(l + ')'5) + t(l - ')'5)A tt(l - Y5) 

+ t(1 + ')'5)A~(1 - Y5) + t(l- ')'5)At(1 + Y5)' 

where a, b, c, dare 2 x 2 matrices. 

Then under the product 
~ .-....-

(D9) 

A * C = t(AC + AC) + tY4(ACt - ACt) (D10) 

the matrices of the form shown above form a split 
Cayley algebra equivalent to the Zorn's vector matrices 

(
a y + a·d) (- iaCJ·c - i6CJ·a + iCJ.bXd»). 

A*C = 
(iyCJ.b + i(3CJ.d + iCJ' (a x c) «(36 + bec) 

(Dll) 

Writing A in the form 

A = t(l + Y5)(a + y' a) + t(l - Y5)«(3 + y' b), 

= t(l- ie 7 )(a + eja j ) + t(l + ie 7 )(f3 + ejb j ), 

= auO + utaj + (3u o + ujb j , (D12) 

it is easily seen that the split octonion baSis U j , uO' ut, 
Uo is realized in this case by 

u~ = t(l + Y5)' U o = t(1 - Y5)' 

ut = t(1 + Y5)')'j, u j = t(l- ')'5)')';> i = 1,2,3. 
(D13) 

Therefore, the role played by ie in extending the 
quaternion algebra (1, e l' e 2. e3 ) into the split octonion 
algebra is played in the above realization by Y5' i.e., 

')'5 *(1, Yl' Y2' Y3) = Y5(1, Yl' Y2' Y3) 

= (Y5' Y5Y V Y5')'2' Y5Y3)' 

* multiplication by Y5 reduces to the ordinary matrix 
multiplication. Conversely, the crucial role played by 
Y5 in constructing projection operators into lh and rh 
states is reflected in the octonion algebra by the impor
tant role played by Uo and u(') as projection operators 
into quark and antiquark states in the octonionic repre
sentations of the Poincare group. 14 
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We present a global formulation of projective theories of relativity in the framework of projective 
manifolds, that is, manifolds based on the pseudogroup of homogeneous transformations in R'. 
Apart from formulating every previously considered geometric object and physical relation in an 
invariant manner, some new results, such as the theorem on the semidirect product structure of the 
invariance group of Einstein-Maxwell equations, and theorems on topological restrictions on the 
underlying five-dimensional projective manifold, etc. have been obtained. The relationship between 
space-time and the auxiliary 5-manifold is clarified and investigated in detail. A more general 
geometric definition of the electromagnetic field tensor and a geometric interpretation of the 
charge/mass ratio is given. 

INTRODUCTION 
Projective theory of relativity originated as one of the 

various attempts to formulate a unified and geometrized 
theory of gravitation and electromagnetism. Following 
the pioneering work of Weyl,l Kaluza2 and Klein3 intro
duced a five-dimensional manifold whose fifteen com
ponent metric tensor, under some rather artificial 
assumptions, could be interpreted as the combined field 
tensor satisfying the Einstein-Maxwell equations. The 
physical Significance of the fifth dimension remained, 
however, unclear until Veblen and Hoffmann,4.5 Schouten 
and van Dantzig6 showed that the Kaluza-Klein theory 
could be regarded as a four-dimensional projective 
theory, in which a four-dimensional projective space was 
attached to every point of space-time. A somewhat 
different approach was taken by van Dantzig7 who con
sidered homogeneous coordinates in a five-dimensional 
space and introduced geometric objects whose compo
nents were homogeneous functions of coordinates. 
Jordan8 demonstrated the homomorphism of the group of 
homogeneous coordinate transformations in R 5 with 
the invariance group of Einstein-Maxwell equations 
and gave a generalized version of the theory9.10.11. 

All these works were however formulated in local co
ordinates. The object of this paper is to provide a global 
formulation of projective theory of relativity in the frame
work of so-called projective manifolds, that is, manifolds 
based on the pseudogroup of homogeneous transformations 
of degree one in R 5. This provides a global formulation 
of van Dantzig and Jordan's version of projective theory 
of relativity. 

In the first part, the invariance pseudogroup of Ein
stein-Maxwell equations is investigated in some detail 
and its relationship with the pseudogroup of homogeneous 
transformations of degree one in R 5 is established. This 
leads naturally to projective manifolds. All geometric 
objects are defined globally and topological restrictions 
for the existence of such manifolds are pointed out. 

In the second part, the projective theory of relativity is 
formulated and projections onto space-time of various 
geometrical objects are studied, leading finally to the basic 
field equations of the theory. A more general geometric 
definition of the electro-magnetic field tensor and a geo
metric interpretation of the charge/mass ratio is given. 

1. Coo-PROJECTIVE MANIFOLDS 
The pseudogroup of COO-homogeneous transformations 

Consider the Einstein-Maxwell equations for the com
bined electromagnetic and gravitational fields in vacuum 

G;k + KEik = 0, 

ff: = 0, !;k = CPi,k - CPk,i' 
(1. 1) 
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[Here commas and semicolons denote partial and co
variant derivatives, respectively. The summation con
vention is used throughout and we use + - - - for the 
signature of g;k (i, k = 0,1,2,3).] 

where Ti is the electromagnetic four-potential,Eik = 
!;1!,J - "igiJlmfZm the energy-momentum tensor of the 
electromagnetic field!;k' and Gik the Einstein tensor for 
space-time with metric g;k' Equation (1. 1) is, of 
course, invariant under the pseudogroup K of Coo trans
formations in R4 

(1. 2) 

K is strictly speaking a pseudogroup because coord
inate transformations in a Coo -manifold, i.e. Coo-diffeo
morphisms between open sets in an do not quite satisfy 
all the properties of a group. For a precise definition of 
pseudogroup of transformations, see Ref. 12. 

But (1. 1) is also invariant under the (Abelian) group E 
of gauge transformations 

E :3 [cp]: CPt --7 CPi + CP,i' (1.3) 

where cP is a scalar function in R 4. The symmetry group 
of the Einstein-Maxwell equations is therefore the com
bined pseudogroup G, a typical element of which will be 
denoted by g = (A, [cp]) to mean a gauge transformation 
[cp] followed by a coordinate transformation A, e.g., 

(A, [cp]):cP;(x k) ~ cp;(xk) + cp(xk),; ~ [cpj(xk) + cp(Xk),i]X~;, 

We have the following structure theorem for G. 
(1. 4) 

Theorem 1. 1: G is a semidirect product of K and E. 

Proof: This follows from the group product rule in 
G. Note that the unit element of E is [c], where c is any 
constant. Denote bye the unit element of K. Now con
sider a gauge transformation [cp 1] followed by a co
ordinate transformation Al and then [CP2] and A2-all in 
that order. Then we have 

~J ~ . 
cpj(x k) ~ cp;(Xk) + cf>t(xk),; ~ (cp;(Xk) + CPl(Xk),i)X~t' 

[tl>:aJ . (k)' (k') A 2 n.. ( k)' ., 
----7 CPj(xk)x.';, + CPl X ,;X.'i' + CP2 x.;, ----7 'l'i X X.'i,X.'i" 

+ n..1(xk) .xi.,x i .'" + CP2(xk') ,.,x i,.'" 't' .Z..I.I , • 

= (cp;(Xk) + CPl(xk),i + CP2(xk'(Xk}»x,ii" (1. 5) 

or 

Copyright © 1973 by the American Institute of Physics 1668 
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The inverse rule is therefore 

(1.7) 

We see that G = KE, i.e., (A, [¢]) can be written uniquely 
as (A, [¢]) = (A, [c])· (e, [¢]). 

K induces an automorphism of E as follows: 

(A, [c]) : (e, [¢]) ~ (A, [c ])(e, [¢ ])(A, [c ])-1 

= (A, [¢ ])(A-1, [- Co A -1]) 

= (e, [¢ 0 A-1]) E E. 

And E is a normal subpseudogroup of G, because 

(A,[¢]t1(e,[l/I])(A,[¢]) = (A-1,[- ¢oA-1])(e, [l/I])(A, [¢]) 

= (A-l,[- ¢oA-l])(A,[l/IoA + ¢]) = (e,[l/IoA]) EE. 
QED 

Jordan8 showed that the symmetry group of (1.1) is 
intimately connected with homogeneous transformations 
of degree one in R5. This is made more precise as 
follows. 

Definition: A mapping f: U ~ R is said to be a 
locally homogeneous function of degree f.l on an open set 
U C Rn,iffor all x E U and all t E (1- Ex, 1 + Ex),for 
some 1> Ex> 0 such that tx E U, we have f(tx) = tflf(x). 

We shall recall here some elementary facts about 
such functions. Denote by C/lOO(U), the class of Coo locally 
homogeneous functions of degree /L on U (we consider 
only the Coo case, although the Ck case could be treated 
without much change): 

(i) f E C~(U) <=:> x if. i = J.l.f (Euler's equation), 

(ii) f E CjJoo (U) =:> f, i E C;l (U), (1. 8) 

(iii) f E C~ (U), g E Cf'(U) =:> f· g E CI'~A (U). 

The notion of Coo locally homogeneous functions of 
degree J.I. can now be generalized to maps f : U ~ V, where 
U and V are open sets in Rn and am, respectively. That 
is, each coordinate function is to be locally homogeneous. 

Proposition 1. 1: Let f: U ~ V be a smooth diffeo
morphism (i.e •• bothf and f- 1 are Coo) in Rn of open sets 
U onto V. Then f- 1 E C~l (V) if f E C~ (U) and f.l ~ O. 

I' 

Proof: Lety = [y1(x), ••• ,yn(x)] = f(x) and x = 
[x1(y), ••• ,xn(y)) = f-1(y). Then xlyjl = /Lyj, and yixl = 
f.l-1x1yj xi. = W 1X i • ' i-lED 

,I .J 

Proposition 1.2: Let f: U ~ V and g: V ~ W, where 
U, V, Ware open sets in RP, Rq, and RS, respectively. If 
f E C;(U) andg E Cf'(V), thengoj E C~(U). 

Proof: Let 

y = [y1(X), , •• , yq(x)] = f(x) , 

z = [zl(y), ••• ,zs(x)] =g(y). 

Th~n 

xiy,~ = /LY'" (i = 1, .•• ,P, a = 1, ..• ,q), 

So 
Y"'z;1x = AzA (A = 1, ••• , s). 

XiZ~ = XiZ;& Y,'1 = f.lY"'Z;& = f.lAzA. QED 

In particular if i\. = 1, go f E C; (U). Note that, if Ii- = 
O,g 0 f is locally homogeneous of degree zero irrespec
tive of whether g is homogeneous or not. 
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As a Corollary of Proposition 1. 2, we have, 

Proposition 1.3: Smooth diffeomorphisms, which 
are locally homogeneous of degree one,jorm a proper 
subPseudogroup Hn of the pseudogroup of all smooth 
diffeomorphisms in Rn. 

We can now state the homomorphism theorem due to 
Jordan. 

Theorem 1.2: The pseudogroup H5 is homomorphic 
to the symmetry group G of the Einstein-Maxwell equa
tions in vacuum. 

Proof: An element h E H5 can be written as 

h: XI' ~ XI" = Xfl'(XI'), /L = 0, 1,2,3,4, (1. 9) 

where XI"(XI!) are Coo, invertible, and locally homogeneous 
functions of degree one. It can also be written as 

h : XI' ~ XI" = Xflf(fl) (XI') (no summation), (1.10) 

where f(fl)(XI') are Coo, invertible, and locally homogeneous 
functions of degree zero. B5 has the following sub
pseudogroups: 

J5 = {h EH51 h :Xfl ~ Xfl' = Xflf(XI') = XflF(~~, ••• , ~~)} 

N5=(~.hEH5 h:XO.~XO'=XO (Xl X4)!.(1.1l) 
Xk~Xk' -XO.fk - -

- J Xo" •• , XO 

The theorem is proved by considering the homo
morphisms 

J5 ~ E, J5 3> j ~ [¢] = [logF], 

N5 "" K, N53> n ~ A:Xk ~ x k' =fk(Xk), 
(1. 12) 

and by establishing that J5 is a normal subpseudogroup 
ofB5. QED 

For details of the proof we refer to Ref. 9. Actually G 
is isomorphic to a subpseudogroup of H5. But it is H5 
that we shall be concerned with. 

Projective manifolds 

A Ck manifold is, by definition, a topological space with 
a maximal atlas compatible with the pseudogroup of Ck 
transformations in R n. We wish to consider manifolds 
based on the pseudogroup Hn. 

Definition: An (n + l)-dimens.ional Coo projective 
manifold is a Hausdorff space with a maximal atlas com
patible with the pseudogroup Hn+1 of Coo homogeneous 
transformations of degree one in Rn+1. 

From now on M will denote an (n + l)-dimensional Coo 
projective manifold. We shall assume that M is also 
paracompact. Let {Ui , ¢J be an atlas of M. Then for all 
pairs (i,j) such that Ui n UJ ~ iI> the coordinate maps 
¢j 0 ¢;-1: Xfl ~ Xfl' are locally homogeneous maps of 
degree one. Note that a maximal atlas compatible with 
Hn+l need not be a maximal atlas compatible with the 
pseudogroup of all Coo transformations in Rn+1. So 
strictly speaking a Coo projective manifold is not a Coo 
manifold, although an atlas compatible with Hn+1 is com
patible with the pseudogroup of all Coo transformations in 
Rn+1; in other words, a Coo projective structure defines 
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uniquely a Coo structure. We shall consider the converse 
problem later. 

Definition: A mapping f:M -) N, where M and N are 
Coo-projective manifolds, is called a Coo homogeneous 
map of degree JJ if for every point x EM, there exists a 
local chart (U, CP) at x and a local chart (V,1/I) in y = f(x) 
such that the map 1/1 0 f 0 cP -1 is a locally Coo-homogeneous 
map of degree JJfrom CP(f-l(V) n U) into 1/I(V). 

It follows from Proposition 1. 2 that the homogeneity 
condition is independent of the choice of local charts 
since coordinate maps are homogeneous maps of degree 
one. 

Note that the definition makes sense even if N is an 
ordinary Coo-manifold, if JJ :::::: O. 

If in the above we take N :::::: IR, we obtain homogeneous 
functions f : M -) R of degree JJ. In other words,f : M -) 
R is a Coo homogeneous function of degree JJ if! is a Coo
function on M and for every x E M there exists a local 
chart (U, CP) at x such thatfo cP -1 is a locally homogeneous 
function of degree JJ from CP(U) into IR. Again the homo
geneity condition is independent of the choice of charts. 
For, if (Ui , CPt) and (fJ, cP j) are two charts with Ut n Ut '" 
w,wehavefocpj-1 = tfoipi1)o(CP;oCPj-1). Since cp;oCPjl 1S 

locally homogeneous of degree one, it follows from Pro
position 1. 2 that! ° cP;-l andf 0 CPjl have both the same 
degree of homogeneity. 

Proposition 1.4: Letf:M->' N,g:N-) Pbe Coo 
homogeneous maps of degree JJ and A, respectively, where 
M, Nand P are Coo projective manifolds. The composite 
map go f is a Coo homogeneous map of degree JJA. 

Proof: Follows from Proposition 1. 2. QED 

Definition: A Coo homogeneous diffeomorphism f : 
M -) N is a Coo diffeomorphism such that f and f- 1 are 
homogeneous maps of degree one. 

A Coo-homogeneous diffeomorphism of course implies 
Coo diffeomorphism. The converse problem will be con
sidered in Theorem 1. 3. 

Definition: A point p E M is an origin of M if there 
exists a chart (U, CP) at P such that CP(P) = (0, ••• ,0). 
Let (V, 1/1) be another chart atp with 1/I(p)=(X8~ ... ,X3'). 
Then 1/10 CP-1«0, ..• ,0)) = (xg', ... ,X!,':) and for some 
t'" 0,1/1 0 cp-1(t(XO, ••• ,xn» == (tXO', ••• ,txn'). Therefore, 
xg' = , ... , = X3' = O. 

The definition of origins is therefore independent of 
the choice of charts. 

Theorem 1.3: A maximal atlas of an n + 1 dimen
sional Coo -manifold contains a subatlas without origins 
compatible with Hn+1 if and only if the manifold admits a 
Coo vector field X with no singularities. (We are indebted 
to S. Halperin for this theorem.) 

Proof: Let.z;; denote the flow of X. We can cover the 
manifold by a collection of charts (U, CP) with the follow
ing properties. There exists a hyper surface ~ of U which 
intersects the flow lines of X nontangentially such that 
CP(Z) intersects the radial lines from the origin in Rn+l 

also nontangentially, and that for every pointp E U there 
exists a unique point Po E ~ and a real number € > 0 
such that p = .z;;po for some - E < t < E. If (U', CP') is 
another such a chart with U n u' '" W then we can always 
find such a hypersurface ~ in the overlap U n U', so 
that the above holds for all its points. 
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Then define a map 1/1 : U -) Rn+l by p -) 1/I(P) = etcp(po), 
which is a local Coo diffeomorphism and (U,1/I) is an 
admissible chart. Let (U', 1/1') be another such chart de
rived from (U', CP') with un u' '" W. Then 1/1' 0 1/1-1 (CP(Po)} 
= 1/I'(Po) = CP'(Po} and 1/1' 0 1/I-l(e t cp(Po» = 1/I'(FePo) = 
etcp'(po)' Thus 1/1' 0 1/1-1 is locally homogeneous of degree 
one. The set of all such charts (U, 1/1) is therefore com
patible with Hn+1. 

This proves the sufficiency part. Necessity is estab
lished in the next section where we construct a non-
vanishing vector field X. QED 

Theorem 1.4: A Coo manifold admits an atlas com
patible with Hn+l if it is noncompact, or if it is compact 
and orientable with Euler characteristic zero. 

Proof: Follows from Theorem 1. 3, 

Projectors 

QED 

From now on we shall consider M to be without origins. 
We shall denote the set of all Coo homogeneous functions 
of degree p. on any open subset U of M by C;(U). The set 
CO"(M), which is a subring of the ring of all Coo - functions 
on M will play an important role and t~e homogeneous 
functions of degree zero will be called projective invari
ants. 

A Coo vector field on a Coo manifold can be defined as 
a derivation of the algebra of differentiable functions. A 
projective vector field, or in van Dantzig's terminology, 
a projector of type (1,0) satisfies an additional property. 

Definition: A projector of type (1, 0) ~ is a Coo
vector field such that ~(f) E C; (U) for every f E Cjf(U). 

In local coordinates (Xl'). P. = 0, 1, ••• , n, on a co
ordinate chart (U, CP), ~ can be expressed as ~ = 
~1'(X}a/aXI' where ~1'(X) == ~(XI'). Since XI' E Cr(cp(U», 
~1'(X} E Cf( cP (U». Thus a projector of type (1,0) is 
completely determined by its action on Cr (U) and its 
components are locally homogeneous functions of degree 
one. 

A particular and important example is the coordinate 
projector X, defined as follows. 

Definition: X(f) = Il! for every f E Cl'oo (U). 

That X is a derivation of C~(U} is easily seen. Let f E 
Coo(U) andg EC~(U). Thenfg EC1'1h.<U)'from (1.7) and 
jX(g) + gX(f) = fAg + gp.f = X(fg). Thus X(!) = 0 for 
allf E CO" (U). In local coordinates X = X(XI')a/aXli = 
Xl'a/aXI', that is, the components of X are the coordinate 
functions themselves, Since M is without originS X is a 
nonvanishing vector field. This establishes the necessity 
condition in Theorem 1. 3. 

The integral curves of X, in local coordinates, are 
given by dXIJ/dt = Xl', or Xl'(t) = etXI'(O). 

Definition: A projector w of type (0,1) (or a pro
jective I-form) is a Coo 1-form such that w(~) E Cf;>(U) 
for every projector ~ of type (1,0). 

In local coordinates let w(~) = wl'~l'. Then from (1.8) 
we have 0 == (wl'~I'},uXIJ = (w ,.)(v + wl')~l'. Or wl".)(v = 
- W ,Le., wI' E C~'''1(CP(U»). The components of a pro
jector of type (0,1) are locally homogeneous functions of 
degree minus one. 

Definition: A projector 9 of type (r, s) is a Coo 
tensor of type (r, s) such that 9(w H .," W ... , ~1J , •• , ~$) E 

CO"(U) for all projectors w1 ••• " W .. of type (0,1) and 
~ l' ... , ~ s of type (1,0). 
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In local coordinates the components of e are locally 
homogeneous functions of degree r - s. 

Proportion 1.5: The Lie derivative of any pro
jector e with respect to the coordinate projector X 
vanishes,i.e.,Lx 9 = O. 

Proof: Let e be a projector of type (0,0), i.e., e = 
f E C~ (M). Then Lxf = X(f) = o. If ~ is a projector of 
type (1,0) then Lx~ = X~ - ~,so that (Lx~)f = 0 iff E 
Cf(M). Or Lx~ = O. And if W is a projector of type (0,1), 
(Lxw)~ = X(w(m - w(Lx~) = 0 since w(~) E C~ (M). For 
an arbitrary projector e of type (r, s), (LXe)(w 1 , ••• , wr , 

h,·.·, ~s) = Xe(w 1 ,···, wr , ~l"'" ~s) - e(LXw 1···, wr , 
~l"'" ~s)··· - e(wl>"" wr , LX~l"'" ~s)··· = O. 

QED 
Connections and metric 

Definition: An affine connection 'V on M will be 
called a projective connection 13 if'V,1'/ is a projective 
vector field whenever ~ and 1'/ are. 

Definition: A semi-Riemannian metric g will be 
called projective if it is a projector of type (0,2). 

Theng(~, 1'/) = (~, 1'/) is a projective invariant. The 
following two propositions are easily demonstrated. 

Proposition 1.6: Given a projective inner product 
(,), the unique Levi-Civita connection 'V, which satisfies 

'V,1] - 'VTJ~ - [~, 1]] = 0 

~(~, 1]) - ('V,~, 1'/) - (~, 'V, 1]) = 0 
(1. 13) 

for all projective vector fields ~,1],~, is a projective 
connection 

Proposition 1.7: 

'Vx~ - 'V,X = 0 

('Vx~, 1]) + (~, 'Vx 1'/) = 0 
(1. 14) 

for all ~,1'/. In particular, ('VxX,X) = O. 

From now on we shall assume that M is endowed with 
a projective metric and the unique projective connection 
defined in Proposition 1. 6. 

Proposition 1.8: X generates a local one-parameter 
group of local isometries of M. 

ProoF From Proposition 1. 5, Lx g = O. QED 

Let Cx be the contraction operator with respect to X. 
Since Lxw = d 0 Cxw + Cx odw where w is any projector 
of degree (0, 1) and d the exterior derivative, we have in 
view of Proposition 1. 5 again 

d oCxw + Cxodw = O. (1. 15) 

In particular, if w = X *, the induced prOjective I-form 
of X by (,) , we get 

(1. 16) 

In contrast to the Riemannian case we have the follow
ing negative result which is of physical interest. 

Proposition 1.9: There exists no local coordinate 
system on M in which the connection components rJ;B 
vanish at any given point. 
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Proof: Suppose rl:B = 0 at P EM. Then g)lA " = 0 at 
p. But since g /''' is a locally homogeneous function of 
degree minus two,g)lA "Xv = - 2g1!A' Or g)lA = 0 at p, 
contradicting the nonaegeneracy Of. g • QED 

Thus a physical field represented by g)lA would not 
satisfy an equivalence principle. 

Orthogonal projection on X 

The coordinate projector X will play an important role 
in the theory. We shall assume thatJ = (X,X) ;c O. We 
write ~ .L 1'/ if (~, 1'/) = O. Denote by ~-'- the orthogonal 
complement of the projection of ~ on X, i.e., 

(1.17) 

Then ~-'- .L X, X-'- = 0; and ~ .L X implies ~-'- = ~. In local 
cordinates the components of ~-'- are ~<J;) = ~/-I -

J-l~vXvXj1. Recall that (,) induces an isomorphism 
between projective vector fields and projective 1-forms. 
Let ~* denote the induced 1-form of ~. Then the ortho
gonal complement of the projection of a projective 1-
form w on X is given by 

w.L = W - J-1w(X)X*. (1. 18) 

Then (X*).L = 0, w-'-(~) = w(~.L). This can be easily ex
tended to an arbitrary projector e. 

Definition: Two projectors e1 and e2 are said to be 
congruent,and we write e1 = e2 , if et = e~. 

If e = 0, the covariant differential of e, 'Ve need not be 
congruent to zero. For example, let ~ be parallel to X. 
Then 'V~(X *,1'/) = X *('V,,~) = <X, 'V,,~) ;c O. Following 
Jordan we wish to consider a new connection K such 
that if e = 0, then the covariant differential K9 of 9 rela
tive to K is also congruent to zero. 

Theorem 1.5: Given a projective inner product ( ,), 
there is a unique projective connection K such that 

KTJ~.L = ('VTJ~.L).L, 

~(~, 1'/) = <K1;~' 1'/) + <~,K1;1'/) 

for all projective vector fields ~,1'/, ~. In fact, 

Kll~ = 'VTJ~ + J-l<~, 'VllX>X - J-l(~,X) 'V"X. 

Proof: From (1.13) and (1. 20) 

(K,~, 1]) + (~,K, 1]) = ('V,~, 1]) + (~, 'V, 1]). 

From (1.19) 

(Kll~' ~.L) = ('V1jP' ~.L). 

for all ~ E P(M), and therefore 

KTJ~ = 'V1j~ - J-l<~,X}'V~ + f(X,~, 1'/)X, 

(1.19) 

(1. 20) 

(1. 21) 

(1. 22) 

(1. 23) 

(1. 24) 

where f(X, ~,1'/) is a projective invariant, which remains 
to be determined. 

If we put ~ = 1] and 1'/ = X in (1. 22) and use (1. 24), we 
obtain finally 

<~,X}[f(X,X, 1]) - J-l('V1jX,X)] = <~, 'V "X} - f(X,~, 1])J. 

(1. 25) 
Putting ~ = X in (1. 25) we get 

f(X,~, 1]) = J-l<~, 'V"X}. QED 
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Corollary: 

(1. 26) 

Thus ~.L = ~ implies (Kn~).L = Kn~ and ~.L = 0 implies 
(Kij~).L = O. The property (1. 26) applies to any arbitrary 
projector e, i.e.,Kije.L = (Kne).L. 

Proposition 1.10: e == 0 implies Ke == O. 

Proof: It follows from Kn e.L = (K e).L that if e is 
parallel to X, then so is Kn e. ij QED 

The property (1. 19) also applies to any arbitrary pro
jector 0, i.e., 

(1. 27) 

2. PROJECTIVE THEORY OF RELATIVITY 

The projective formalism 

The projective formalism of a unified field theory of 
~ravitation and electromagnetism is based on the triple 
{M, cp, V} where M is a five-dimensional projective 
manifold with a nondegenerate projective metriC, V the 
(four-dimensional) space-time and cp : M ~ V a surjective 
Coo-map such that the induced map cp*: coo(V) ~ Coo(M) 
given by cp·h == hocp,h E Coo(V) is a surjective map from 
the COO-functions in V onto the Coo homogeneous functions 
of degree zero in M. 

cp is necessarily a homogeneous map of degree zero14 

and, as noted in Proposition 1. 2, such a map makes sense 
even though V is not a projective manifold. 

It turns out that a geometrized field theory-formulated 
exactly along the lines of general theory of relativity-on 
the five-dimenSional manifold M gives, on projection 
onto the space-time V, a unified and geometrical inter
pretation of both the gravitational and electromagnetic 
fields. 

Projection onto space-time 

We will be conSidering projections of geometric 
objects in M onto V. Since cp is surjective, cp * is injec
tive. Thus we have 

Proposition 2.1: cp. is an isomorphism between the 
ring of COO-functions in V and the ring of COO-homo
geneous functions of degree zero in M. 

In general a smooth surjective map from one manifold 
onto another does not carry vector fields into vector 
fields. But in view of Proposition 2. 1 and the fact that 
~(C~(M» C C(f(M) for all projective vector fields ~,we 
have 

Proposition 2.2: If ~ is a Coc -projective vector 
field on M, then cp .. ~ defined by 

cp"'«cp.~)h) == ~(ho cp) for all hE Coo(V) 

is a Coo vector field on V. 

(2. 1) 

In local coordinates15 let cp be given by XI' ~ xk(XI'). 
Then ~k = Xkl'~l', where ~I' == ~(XI') and (cp. ~)(Xk) = p. 
Note that cp; ~ = 0 if ~ is parallel to X. 

The set P(M) of all COO-projective vector fields on M 
is a module over C&,,(M) [but not over COO(M)], and the sets 
of all Coo-projective vector fields onM which are ortho
gonal and parallel to X, to be denoted by P.L(M) and Q(M), 
respectively, are submodules over CO"(M). In fact, P(M) 
is the direct sum of P.L(M) and Q(M). 
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In view of Proposition 2.1 and 2.2, cp* is a module 
homomorphism from P(M) , which is a module over C~(M), 
into the set X(V) of all Coo-vector fields on V, which is a 
module over coo(V). Let CPJ be the restriction of Cp* to 
P.L(M). 

Theorem 2.1: CPi;.: P.L(M) ~ xCV) is a module iso
morphism. 

Proof: Cp* is surjective, because, according to Pro
position 2.1 every derivation of coo(V) induces a deriva
tion of C~ (M), which in turn induces a derivation of 
Cf (M) and defines a projective vector field. Now 

x(V) "" P(M)/Kercp. = P(M) • 
Q(M) 

But P(M)!Q(M) "" p.L(M). Thus P.L(M) c= X(V) and the 

(2.2) 

isomorphism is given by cpi. QED 

If e is a projector of type (0, s), we define cp. e by 

Cp*«CP. e)(1]l"'" '1s» == e(cpi1]l"'" cpi1]s) (2.3) 

for all 11; E x(V). The projection cp",g .of the metric pro
jective tensor g on M is again a nondegenerate metriC on 
V and signature of g = (signature of cp*g, Sign of J). We 
have 

(cp*~l> CP.~2)Y == (~t, ~~)M = (~l' ~2)M - J-l(~1>X)Ma2'X)M 
(2.4) 

for all ~i E P(M). If 1], ~ 1. X, it follows from (1. 21) that 
cp.(Kn~) == CP.('i7ij~)' 

Theorem 2.1: The map D: xCV) x x(V) ~ xCV) 
given by 

(2.5) 

where 1/1 = (cpi;.tl, is the symmetric Riemannian connec
tion on V relative to cp.g. 

Proof: We have evidently Dn(w 1 + w2) = D~wl + 
Dnw2 and Dn1+nZ(w) = Dn1w + Dnzw. And l/I(h1]) = (h o cp)I/I1], 
h E coo(V). So that Dhijw = hDijw, Also Dn(hw) = 
cp*('i7>/in«h o cp)l/Iw» =hDnw + 1] (h)w. Finally,(D,1],w}y + 
(1], D,w)y = ('i7,,,,I/I1], I/IW)M + (1/11], 'i7""I/IW)M = 1/I~(I/I1], I/IW)M = 
1/I~(cp*(1], w)y) = ~(1], w)Y' Therefore D is the symmetric 
Riemannian connection relative to cp *g. Note that 
CP.('i7>/inl/lw) = cp*(K"Yinl/lw). QED 

ConSider now the curvature projective tensor relative 
to the connection K on M, 

RK(~l' ~2)~3 = K~lK~2 ~3 - Kt2Ktl~3 - K[tl' t2]~3' (2.6) 

The prOjection map CP. is easily extended to arbitrary 
projectors. 

Theorem 2.3: cp*RK =RD,the curvature tensor in 
V relative to the connection D. 

Proof: 

DT/DW~ = cp*(K"T/I/I(Dwm = CP*(K~nl/l(CP.(K;wl/l~))) 
:0= cp*(K~T/(K>/iwl/l~).L) = cp*(K>/ij(>/iwl/l~). 

Also, 

D[1j.<J~ = cp*(K",rn,wll/l~) :::: cp*(K&/iT/."'<JI/I~). 

Thus 
RD('1, w)~ = CP*(RK(I/I1], I/Iw)I/I~) :::: (cp*RK)(71, wg. 

QED 
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Field equations 

Suppose we have a projector equation on M. 

For example, let 

B(~, 11) = 0 

for aU projective vector fields ~, 11 on M, where B is 
some projector of type (0,2). Then 

B(~, 11) = B(~l. + jX, 11l. + gX) = B(~L, 11l.) + jB(X, 11l.) 

(2.7) 

+ gB(~L,x) + jgB(X, X) = 0, (2.8) 

where j ,g E CIf(M). Define two projectors B 1, B2 of type 
(0,1) by B1(11) = B(X,11), B2m = B(~,X) and a projective 
invariant B12 = B(X,X). Then (2.8) implies 

B(~, 11) = Bl.(~, 11) + jBt(l1) + gB~m + jgBt2 = O. (2.9) 

Thus B = 0 implies Bl. = 0, Bt = 0, B~ = 0, Bt2 = 0, 
each of which are orthogonal to X and, therefore, in one
one correspondence with tensors on V. A projector 
equation on M therefore corresponds to several tensor 
equations on V. In terms of components, BJiV = 0 corres
ponds to Bik = 0, BillXIl = 0, BllkXIl = 0, and BllvXllXv = 0, 
where Bill = BAllg(, Bilk = BIlAg} , Bik = BAllgiAgl/, g}X.IA = 
6L· 

Let F be an antisymmetric projector of type (0, 2) 
defined as follows: 

(2.10) 

[KF](~.11,~) = (K,Fm,11) + (K,F)(11,~) + (KTJF)(~,~). 
(2.11) 

Theorem 2.4: 

[KF] = O. (2.12) 

Prooj: We first show that [KF] = [KF]l. and then 
[KF]l. = O. F(~,X) = 2J-1(~,KxX) = 0 because KxX = 
J-1(X, VxX)X = O. Since F is antisymmetric, F ..l. X, so 
that KF ..l. X, [KF] ..l. X. Or [KF] = [KF]l.. 

Now (K,F)(~, 11) = ~(F(~, 11» - F(K ,~, 11) - F(~,K ,11). 
So that 

t(K,Fm,11) = ~(J-1)(~,Kx11) + J-1{~«~,Kx11» 
- (Kt~,Kx11) - (~,KxK,11)} 

= - 2J-2(KcX,X)(~,Kx11) 

+ J-1(~,K,Kx11 - Kx K,11). 

Suppose now that ~, 11, ~ ..l. X. Then K,Kx11 = K,(Vx 11)l. = 
(\I,(V x11)l.)l.. Since ~ ..l. X, 

(~, K ,Kx 11) = (~, V,(Vx l1)l.) 

= (~, V,Vx 11) - J-1(Vxl1,X)(~, V,X). 
So that 

(~, K,Kx 11 - Kx K,11) = (~, Vt V x11 - \lx Vt11) 

- J-1{(11, V xx)(~, \lx~) + (~, \lxX)(l1, Vx~)' 

Also (~,Kx11) = (~, Vx 11) and (K,X,X) = (V,X,x) = 
(Vx~,X) = - (VxX,~) by (1. 14). 

Substituting above we find that 

i(KtF)(~~ 11) = J-2{3(Vx X, ~)(~, Vx 11) - [(V xX, O(~, Vx 11) 

+ (\lxX, ~)(11, Vx~) + (VxX, 11)(~, Vx~]) 

+ J-1(~, V, Vx 11 - Vx V, 11). 
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If we now cyclically permute ~, ~,11 and add, both the 
terms vanish-the second because of Bianchi identities. 
Thus [KF]l. = O. QED 

The projection of F onto space-time can be interpreted 
as the electromagnetic field tensor and that of (2.12), as 
one set of Maxwell's equations. In local coordinates the 
components of F are given by Fpo = J-1(Xpo + J-1Xllp XIlXo 
-J-1XpX jLO XIl) whereXIl =gIlAXA andXpo =Xo,p -Xp,o' 

In view of the relationship (1. 21) between the two con
nections K and V (and, consequently between the curvature 
tensors R K and R d and Theorem 2. 3, it is now easy to 
express the projections of the curvature and Ricci ten
sors, Ricci scalar, etc., relative to the connection V in M 
onto the corresponding quantities relative to the connec
tion D in V. 

For example, consider the Einstein equations in M in 
local coordinates 

(2.13) 

where RIlA are the components of the Ricci tensor rela
tive to V. 

Then according to the procedure (2.9), one obtains9 

Rkl = R,jf - iJ-1XkiXil - iJ-1J,k;1 + tJ,kJ,1 = 0, 

RkvXv = tXtl + tJ-1XLJ,1 = 0, 

RIl01lXv = ~J;'; - tJ-1J,kJ,k - tXklXkl = 0, 

where Rft are the components of the Ricci tensor rela
tive to the connection D in V. 

In order to obtain exact correspondence with the Ein
stein-Maxwell equations (1.1) it is necessary to make 
the additional assumption J = - 1, in which case for any 
projective vector field ~, 0 = ~«X,X» = 2(V~X,X) = -
2(VxX, ~. Since (,) is nondegenerate, VxX = O. Then 
F(~, 11) = i(~, Vx 11) and Fpo = Xpo' 

We refer to Ref. 9 for detailed derivation of the field 
equations. 

Geodesics 

We have seen that any ~ E P(M) can be written as ~ = 
a + aX, where a E Pl.(M) and a E CIf(M). Conversely, 
any object of the form a + aX is in P(M); thus a and a 
are independent of each· other . 

Let y(t) be a V-geodesic inM with tangent vector y*(t) 
of the form a + aX, for some t, i.e., 

(2. 14) 
or 

VcP + aVxa + a(a)X + aVaX + a2VxX = O. (2.15) 

The curve <p.y has tangent <p*(a + aX) = <p*a: 

D", a <p* a = <p*(Vaa) 
* 

= - 2(<P' a)<p*(Vxa) if J = const. (2.16) 

This is equivalent to 

(2. 17) 

for all Y E X(V), or 

(tJ;(D", a<p*a), tJ; Y)M + 2a«Vx a)L, tJ; ~ = 0, 
* 

(2.18) 

(2.19) 
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(2.20) 

Projecting this into V,in a chart with a = dxl/ds, this 
becomes 

D 2x l dxk 
~+aFI-=O 
DS2 k ds 

(2.21) 

which corresponds to the equation of motion of a charged 
particle if a = - elm. Now 

a(a) = ~(J-1(~,X» 
= - 2J-2(V,X,X)( ~,X> + J-l(V,~,x> + J-1(~, V,X> 
= 2J-2(VxX, ~)(~,X> + J-1(Vg ~,X> + 0 (2.22) 

= 0 if J = const 

since V,~ = 0 along a geodesic. Therefore, a is constant 
along 'Y, and the assumption that J = const is equivalent 
to assuming a constant charge/mass ratio. 

In particular, of course, if a = 0 then ¢ • a is a geodesic 
in V. 

4. CONCLUSION 

One of the advantages of the intrinsic formulation is 
that it can bring into the open the main ideas of the 
theory, which tend to hide behind coordinates. It becomes 
clear that Jordan's theory does not use homogeneity in 
any essential way; it is an artifice to ensure a relation 
between projectors and space-time tensors. For example, 
it can be shown 16 that the converse of Proposition 1. 5 
also holds, that is, if LxO = 0 for any tensor field 0, then 
8 must be a projector. Thus one could start with a 5-
dimensional manifold with a fixed nonvanishing vector 
field X and consider those tensors whose Lie derivatives 
with respect to X vanishes. The quotient space, defined 

J. Math. Phys., Vol. 14, No. 11, November 1973 

by the equivalence relation p "" q if P and q lie on the 
same integral curve of X, can under certain conditions 
be made into a proper manifold which then could be 
identified with space-time. 
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Optimal analytic extrapolation for the scattering 
amplitude from cuts to interior points 
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Given a data function together with an error corridor for the scattering amplitude along some finite 
part of the cuts, one can construct effectively the whole set of analytic functions ("admissible 
amplitudes"), compatible with these conditions and bounded by a certain number M on the 
remaining part of the cuts. Depending on the actual value of an important constant ~o computed 
from the data function and the bound M, this set may be void. If not, in every point of the cut 
plane the set of values of the admissible amplitudes fills densely a circle; explicit formulas are given 
for its radius '9)(z) and center J(z), the latter being the best possible estimate for the whole set. In 
contrast to the linear extrapolation obtained by Poisson weighted dispersion relations, here nonlinear 
functional methods were used. This paper contains an appendix written by Professor C. Foias, on 
some functional analytical methods used in connection with the computation of the numerical value 
of the constant ~o. 

I. INTRODUCTION 

In realistic particle-physics problems, information 
is available only along some limited parts of the cuts of 
the energy (or momentum transfer) complex plane of 
the scattering amplitude, and the problem one is usual
ly faced with is to extract from this limited, error
affected knowledge, information on the behavior of the 
amplitude of other reactions or at energies outside the 
initial range. 1-5 

This is in general an ill-posed mathematical prob
lem, in the sense that small changes (errors) in the 
input data could provide incontrollable responses in the 
output. Nevertheless, following an idea first empha
sized6 at the 1969 Lund Conference, Carle man weight 
functions can be used to write down7,B those dispersion 
relations (sum rules) which exploit this limited, error 
affected information in the most economical way, in 
the sense that any other weighted dispersion relation 
would lead to greater error-bounds in the results. 
As already emphasized in Ref. 7, the dispersion 
relations do not exhaust the optimization problem of the 
extrapolation procedures: The aim of the present paper 
is precisely to find by nonlinear methods this absolute 
opt1mum, as well as to construct all possible analytic 
functions f(z) compatible with some given, error-af
fected, histogram h(z), on some limited part of the en
ergy (or momentum) cut complex plane. [z is here the 
relevant (energy, momentum, cosine, and so on) vari
able and f(z) is the amplitude itself, or one of its com
binations with some given complex functions]. 

We have perhaps all experienced the trying situation 
of being asked by some experimentalist friend to find a 
close form, say for the transverse momentum depen
dence of some cross-section, in terms of "usual" func
tions-cosines, logarithms, and so on. If possible, 
even exhibiting a Regge behavior. To our question "what 
for?", his answer would probably be "in order to have 
some easy-to-remember formula instead of these long 
intricate tables"; but this answer usually hides also the 
secret hope that our formula could apply to a much 
wider range of momenta than that where the measure-
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ments were made, representing, so to say, an "objec
tive" physical reality. 

This standpoint might seem naive, but under a more 
attentive consideration one sees that it prevails over 
the whole of theoretical phYSics. Indeed, we ought to 
remember that each successful theory is, in a meta
phorical sense, a curve which lies inside the error 
corridor along the whole range of 'the present physical 
informations. (This goes fof succesful theories only I 
For, usually, we are content with theories which only 
partially pass through the present error corridor!) Such 
a theory makes definite predictions also outside the 
range of the actual physical information, but, of course, 
one can have no confidence in these "predictions" for, 
in general, there are many possible theories paSSing 
through the same error corridor whose predictions can 
differ considerably outside the range of the present in
formation. This is a serious problem, encountered, of 
course, not only in physics but in every branch of 
science. 

A sensible solution to this problem would.be to work 
simultaneously with the whole set of theories passing 
through the error corridor. The drawback of such an 

high pOSition of the 
stab ilizing control 

lever (sc.l.) 

error {i 
corridor '; 

A .. successful theory" 

~, present information field 

FIG. 1. 

low position of s.c.l. 

... : .... 
: ",,:::: 

:(1i. 
r;, the unknown field 
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approach is, of course, evident, since these theories 
can in principle make arbitrary predictions outside the 
range of the present informations (see Fig. 1). In the 
good old days when the theorist felt the results before 
the actual calculations were done, there was an easier 
choice between the possible outcomes. Nowadays the 
situation has changed drastically, first of all because of 
the considerable broadening of the range of choice 
owing to the informational boom but also due to the ever 
increaSing degree of abstraction. Research has become 
more and more indirect, with the consequence that the 
leading principles are now far outside the reach of the 
phYSical measurements. Even the most common con
cepts of theoretical physics, such as particles, res
onances, exchanges and so on, are beyond the actual 
experimental range, and Landau, for instance, raised 
the question whether it would not be wiser to leave some 
of these principles out. (He included even the concept of 
"interaction" among the other presumable ill concepts. ) 
Indeed, Calucci, Fonda and Ghiraldi9 showed that a 
suitably chosen nonresonant background can simulate as 
well as one would like a Breit-Wigner resonance curve, 
so that those who are fitting cross-section bumps with 
two parameter resonance formulas get exactly what 
they had expected, from the beginning, to get! 

In principle the new scientific approach would have to 
cope with these two, interwoven problems: (0 working 
with the whole set of theories paSSing through the error 
corridor of the present knowledge; (ii) finding new the
oretical concepts to replace the dated ones and con
trolling the behavior of the set of possible theories out
side the range of our present knowledge. Of great im
portance among these concepts are those which control 
"the opening" of the set of possible theories (see Fig. 
1): We shall call them "regularizers" or "stabilizing" 
control levers. (Although the former term is already 
used in the theory of ill-posed problems of mathemati
cal physics, 10 we shall give preference to the latter be
cause of its more specific content.) 

To make things more palpable, consider the problem 
of solving in some function space the equation Af = h, 
with f the input unknown function and h the experimental 
data, from which we try to deduce f. We assume that 
A is a continuous operator, with a unique inverse A-I. 
The uniqueness of the inverse does not yet imply, in 
practice, the unique determination of f from h, since, if 
A-1 is discontinuous, arbitrarily small variation in h will 
cause uncontrollably large changes in f. This is a very 
frequently met situation, e. g., A is the operator of 
taking the restriction of an analytic function to an open 
curve or to a part of the boundary (note that A-I is then 
the operator of analytiC continuation of the function to 
all interior points, and hence, is unique); or consider 
the Fredholm operator of the first kind encountered in 
the theory of diffusion (solving backwards the heat equa
tion) , or in geophysics (solving in homogeneous Laplace 
equations with data given on an open boundary), etc. 

The problem is: what complementary conditions 
should be imposed in order to stabilize the problem? 
Obviously a stabilizing lever of this problem would be 
every condition which restricts the set in which one 
searches for the solution (the admissible !'s) to a com-
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pact set, since that is a sufficient condition to make 
A-I continuous too. 

The problem of devising a general stable approach 
for particle physics, as a whole, might seem a formid
able task; nevertheless, special problems can be treat
ed rather easily. An instructive example is provided by 
the problem of finding all possible amplitudes fez) pass
ing for Z E r 1 (the actual range of measurements) 
through the error corridor 

(1.1) 

where the complex function h(z)-the experimentally 
measured histogram-is given along the part r 1 of the 
cuts of the analyticity domain (D) of fez). The analyticity 
off(z) in (D) represents itself a stabilizing concept, but 
alone it is unsufficient, as there are many analytiC 
functions satisfying (1. 1) which, however, differ 
arbitrarily much outside r 1 • To turn the set of the ad
missible functions into a compact, we shall introduce 
also the stabilizing parameter M, adding to (1.0 the 
boundness condition 

(1. 2) 

where r= r 1 + r 2 represents the whole boundary (cuts) 
of the complex cut plane (D). As it was stated above, 
the aim of this paper is to construct effectively every 
possible analytic functionf(z) in D, satisfying the in
equality (1.1) on r 1 -h(z) and € being given. It will be 
shown that these functions f(z) are labelled, not only by 
the value of the stabilizing parameter M, but also by 
some "running index" 1/1(1;), more precisely by a general 
unimodular function in the unit disk, to be defined later. 
The difference between the role of the "control level" 
M and the "running index" 1/1(1;) will appear clearly 
throughout this paper. 

As a by-product of this theory, we shall find the value 
of the center fez) of the set of the values of all possible 
fez) in every given point z, this center l(z) being the 
best estimate ever found for the extrapolation of the 
scattering amplitudes satisfying (1. 1). A comparison 
with the optimal dispersion relation yield h(z) (see Refs. 
7 and 8) is then performed. 

II. DESCRIPTION OF THE PROBLEM 

Our problem amounts to the construction of analytic 
functions to be used in the analytic continuation of the 
physical data in the holomorphy domain of the scatter
ing amplitude. For what follows, it is convenient to 
transform this holomorphy domainll into the unit circle 
of a suitably chosen conformal variable /:(z) (for techni
cal details see Sec. 2 of Ref. 7), the physical region 
ru where the measurements were performed [where 
the function h(/:) is given] being depicted on the right 
semicircle /: = e i8 , - 1T /2 < e < 1T /2 (see Fig. 2). Follow
ing Ref. 6, in order to express the conditions (1. 1) and 
(1. 2) as a single one, we multiply both the amplitude 
f(/:) (/:E D) and the histogram h{/;) (/:E r 1) with a suit
able chosen function of Carleman type 

Co(M/€;/:) = exp{-ln(M/E)[w(/:) + iw(/:)]}, (2.1) 

7(/:)= Co(M/E;/:)/(/:), (2.2) 

h(/:)=Co(M/E;/:)h(/:), (2.3) 
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1m t; 

9='% 

Re t; 

w(l;.)= 1 

,5' 

9=-"h 

FIG. 2. The unit 1;(z) circle in which the z-cut plane was 
mapped. If the z cuts are (- 00, Zt) and (z,' 00) with data given 
along r 1 = (z2. zs). then 1;(z) ={l- (1- ttl)t 2}/u. where u= [(Zl +z2 
- 2zs)z +zs(Zt + Z2) - 2z1z21![(Z - ZS)(Z2 -Zl) 1. 

where w (I:) is a potential (a harmonic measure) defined 
to be zero on r 1 and one on the remainder part, r 2 , of 
the cuts r= r 1 + r 2 , 

v 2w(I:)=0 for I:ED, 

w(/:)=O for I:E r l , 

w(I:)=l for I: E r 2 , 

(2.4) 

and where w(l:) is its harmonic conjugate (the stream 
line function). For the case depicted in Fig. 2, 

w(l:) +iw(I:)=! - (2/1T) arctanl: 

E! + (i/7r)ln[ (1 + il:)/(l - ib)]. (2.5) 

As, owing to (2.1) and (2.4), the modulus of Co(M/E;1:) 
is equal to 1 on r l and to elM on r 2 , taking by definition 
h(l:) equal to zero on r 2 , 

(2.6) 

[initially the histogram was defined only on the "known 
cut", so that we are free to complement this definition 
with Eq. (2.6)] the conditions (1.1) and (1. 2) are, 
equivalent with the unique one, 

(2.7) 

for the weighted amplitude [see Eqs. (2. 2) and (2.3)] 
1 (1:). 

We are thus left with the well-stated problem that 
given a function h{l:) on the unit circle r= r 1 + r 2 , ' 

h{eIS )= h{eIS) exp[ - (i/1T)ln{M/E) lntan {1T/4 .... 9/2)] 

for -1T/2 < 9 <1T/2, 

h{e '8 )= 0 for 1T/2 < 9 < 31T/2, 
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to find all functions 1{/;) analytic inside the unit circle 
D which approximate h{l:) on r according to (2.7). 

The stabilizing role of the parameter M is now trans
parent; indeed, we shall show in Sec. 4 that for every 
two "admissible" functions 11 (I:) and 12(1:) we have 

(2.9) 

so that, owing to (2. 2), the difference between two ad
missible amplitudes cannot exceed 

(2. 10) 

From (2. 7) it is obvious that we have at least 1){I:) ""E 
and in Sec. 4 an algorithm will be given for the actual 
form of 1){I:). 

In all previous extrapolation procedures we have, so 
far, assumed the existence of at least one analytic func
tion (the amplitude itself) satisfying conditions (1. 1) and 
(1. 2), or the equivalent condition (2.7). Nevertheless, 
for some histograms h(l:) and for some E there may be 
no analytic function f(l:) at all satisfying the condition 
(2.7). For instance, let us suppose that the Carleman 
weighted histogram h(l:) has the special form 

(2. 11) 

where 

h (e IS) = L; c einS 
1 n=O n 

(2. 12) 

is the limit of a function ~ m holomorphic inside (D). It 
can readily be shown that there are no holomorphic 
functions inside (D) which can approximate h given by 
(2.11) with an error E smaller than one. Indeed, putting 

(2. 13) 

condition (2.7) reads 

(2.14) 

But on the unit circle we have 

and, as 1 + I: • Xl U:) (in contradistinction to Xl + 1/1:) is 
holomorphic inside (D) and equal to 1 at the origin, 
from the principle of the maximum of the modulus it 
follows that the value of E of (2.14) cannot be smaller 
than 1! 

Coming back to the general problem, we note that 
~der very general conditions (Fourier expandibility of 
h on the unit circle) the histogram can be cast into the 
form 

(2. 15) 

where ~ and h2 are limits of functions holomorphic re
spectively inside and outside the unit circle: 
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FIG. 3. In a boundary point I t I = 1 the circle filled by the ad
missible amplitudes coincides with the circle of radius EO, the 
"Nevanlinna bound" for the error encountered in Poisson 
weighted dispersion relations (Ref. 7). The point t being on the 
boundary, the harmonic function h(t) coincides also with the w 
weighted histogram h( 1;). In every boundary point, the distance 
between hW and the minimal functionjo is EO' Admissible am
plitudes which are nearer to the center at a particular point 
tE rio have to go away from it at other boundary points II: I = 1. 

.. 
~W= ?;,cntn, (2. 16a) 

.. 
h2(1:) = L; c_mt-m, 

m=l 
(2.16b) 

.. 
h(e i8

) = ~ cne in8 = ~ (e i8
) + h2(e i8

), (2. 16c) 

where 

C_n = 2~ f::>(e i8)exp{:i In(~)lnfn(i - ~)J~in8de. 
(2. 16d) 

It is clear that in our problem, the trouble comes from 
the nonanalytic component ~W. Indeed, again writing 
let) in the form (2.13), we are left to find those holo
morphic functions Xl(t) which according to (2.7) satisfy 

(2.17) 

From the previous example [in which 1i2 was set equal 
to lit, see (2.11)] it is apparent that we cannot approxi
mate arbitrarily well the nonanalytic component h2(t) of 
the histogram by analytic functions - Xl (t); in other 
words, for a given h2(t) there exists a number Eo so that 
for every holomorphic function X1(t) in D we have 

(2.18) 

That holomorphic function which reaches in (2. 18) the 
lower bound Eo will be called "the minimalizing analytic 
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function" and will be denoted by X~W [in the previous 
example we had Eo=l and x~(t)=O]. We should also like 
to stress that unlike E, the quantity Eo does not depend 
only on the accuracy of the experiment, but on the ex
periment itself, E;being a functional of h2 (l:). Of course, 
in order to have at least one analytic function satisfying 
(2.7), E has to be greater than Eo, 

(2. 19) 

Unless we are in the exceptional case E =Eo, the 
"minimal amplitude", constructedj with the minimalizing 
function X~, 

(2.20) 

is not the best approximation ["j(t)"] of all analytic 
functions in (D) satisfying (2.7): Indeed, if E is strictly 
greater than Eo, the set of the admissible function let) 
for every tE 15 fills densely a disk [the boldface circle 
in Figs. 3 and 4, corresponding, respectively, to the 
cases when t is a boupdary and an interior point of (D)]. 
Obviously the center J(t) of the circle represents for 
each t the best approximation, but as it will be proved 
in Sec. 4, this center does not coincide with the fo(t). 

The reader, making the intuitive assumption that the 
histogram is the limit of an analytic function (the am
plitude itself), might get the feeling that all this trouble 
and soul searching is due only to the inaccuracy of the 
experiment which would produce a (small) nonanalytic 
term h2(t). Contrary to the common belief, h2W is by 
no means small (regardless of the experimental ac
curacy), being the direct product of a well-known the
orem of Fourier decomposition applied to functions 

E 

I s I < 1 

FIG. 4. Typical situation in an interior point II: I < 1. The val
ues of all weighted holomorphic functions .1<1:) compatible with 
conditiops (1.1) and (1. 2) fill the boldface circle of radius 1/(1;) 
arollRdj(1;). There are no admissible amplitudes outside it, so 
thatj(1;) is the best estimate for a random-taken amplitude. The 
dashed circle of radius E - EO aroundio( 1;) is still contained in 
the latter one, so that E - EO < 1/(1;) < E'cEspecially for EO close to 
E, 1<1;) may differ considerably from h(1;). 
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which are identically zero over a segment (r2) of the 
boundary. (If a Fourier expandable function is identical
ly zero over some segment of its period, the negative 
and positive frequencies are simultaneously present. ) 
In other words h2(1;) is the consequence of our incom
plete knowledge, reflecting our complete lack of knowl
edge on r 2 rather than the lack of accuracy on r l ! 

Previous methods of extrapolation variously took into 
account this nonholomorphic component. For instance, 
the Carleman weighted dispersion relations, 6 written 
with a conventional Cauchy kernel, 

~(I;) = ~ 1 h(I;') dl;' 
21Tt r 1;' - I; , 

(2. 21a) 

are completely insensitive to the presence of h2' as 

(2. 21b) 

On the other hand, the Poisson kernel used in Refs. 7 
and 8 transforms h2(1;) into the complex valued harmonic 
(but not holomorphic !) function 

~(I;) = ~ c_pl;*P (1;* being the complex conjugate of 1;), 

(2.22) 

so that the extrapolated function7
,8 

~(i;) = 2!i f h(I;')d(G(I;, 1;') + iR(I;, 1;')) '" hi (!;) + ~2W 

(2.23) 

provides a ''hundred per cent approximation" of the 
histogram on r. Indeed, owing to the limiting properties 
of harmonic functions on the boundary, we have on r 

I~W - h(i;) I en =0, (2.24) 

but inside the unit circle the harmonic function h(l;) 
could differ considerably (of course, less than E!) 
from the values of the admissible holomorphic functions 
f(1;). This is especially apparent from the previous 
example: If in Eq. (2.14) one sets E equal to 1, the 
unique analytic function satisfying (2.14) is the minimal
izing function X~( 1;) '" 0, i. e., the amplitude coincides 
both with the unique admissible function loW (the mini
mal amplitude) and with the Cauchy weighted integral 
!he!;), while the corresponding Poisson extrapolation 
h= ~(I;) + 1;* represents, with the exception of the origin 
1;=1;*=0, a worse approximation. The coincidence be
tween the minimal amplitude loU:) and the weighted 
Cauchy dispersion integral hl(l;) which occured in this 
example is purely inCidental, as, in general, 10(1;), 
h(l;) and, especially, ~(I;) could differ considerably 
among them. This is especially apparent from the well
known example of the step function 

h(e i8 )= ° for -1T< 8<0 
1 for 0< 8 < 1T 

=:: 1 + ~ £ sin(2p - 1)8 
1T P=1 2p-l 
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which also emphasizes the importance of the h2 term, 
as the corresponding 

(2.26) 

becomes extremely great in the neighborhoods of the 
points I; = 1 and I; = - 1, while the sum hi + lh -and, 
hence, also the weighted Poisson integral h(I;) =hl(l;) 
+ ~2(1;), as well as the minimal amplitude fo(l;) and all 
the other admissible amplitudes-remain finite. 

If, as in the step-function example, the Carleman 
weighted Cauchy dispersion integral could differ in an 
incontrollable manner from the true amplitude, the 
Carleman weighted Poisson dispersion relation always 
secures the error bound E prescribed by the maximum 
of the modulus principle-or, if one comes back to the 
unweighted (real) amplitude fW, (2.2), the Poisson 
extrapolation 

h(!;)D~F ~(t)/Co(M/E;I;) (2.27) 

secures the "Nevanlina bound" 

I h(!;) - f(l;) I eEi5 < E/Co(!;) '" E exp[ln(M /E)w(~] 
(2.28) 

As we have already stated above and as it will be proved 
in Sec. 4, all admissible weighted amplitudes YW fill 
densely, for every t, a disk of radius 1](1;), contained, 
of course, in the circle of radius E centered around 
hW (see Figs. 3 and 4). 

Without going into the details of Sec. 4, we can im
mediately show that the circle of the admissible 
weighted amplitudes contains a circle of (constant) 
radius E - Eo, centered around the minimal amplitude 
lo(t); for each function 

Yo< ~ W =10(1;) + Ci' (E - Eo)ei~ (0"" Ci' < 1, ° ""4? < 21T), 

(2.29) 

where Ci', cp are constants, is holomorfic inside D and 
satisfies condition (2.7) (the dashed line circles of Figs. 
3 and 4). This provides us with a Simple criterion to 
decide which method to use in some precise practical 
application. For that we need the numerical value only 
of Eo which will be computed in Sec. 3 [see Eq. (3.13)]: 

(1) If Eo «E so that the dashed circle of radius E - Eo 
[and thus, a fortiori, the bold face circle of radius 
1](t), E -~o < 1] < E] fills most of the circle of radius E,~the 
function h(t) represents fairly well the middle point Y (!;) 
of all possible weighted amplitudes 1m (the center of 
the bold face circle), and thus the Carleman weighted 
dispersion relation [see Eqs. (2.23), (2.27) and Ref. 7] 
would give very satisfactory results. 

(2) If the accuracy of the data along the initial physical 
region r l is high enough so that E is small and only 
slightly greater than Eo, it could happen that all admissi
ble amplitudes would pile up in a very small region con
taining the minimal weighted amplitude as in Eq. (2.14). 
Therefore, if the radius E -Eo of the dashed circle is 
small in comparison to E, one has to compute the radius 
1Jm [Eq. (4.20)] and, iOt differs also considerably 
from E, find the center let) of the circle of all the 
weighted admissible amplitudes. Of course, in both 
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cases the optimal approximation for the entire set of 
amplitudes is given by the nonanalytic function: 

(2.30) 

In Sec. 3 we shall deal with the problem of the mini
mal weighted amplitude loU:) and the computation of the 
constant Eo. In Sec. 4 we shall then write down all poss
ible amplitudes f(t) compatible with a given E, as well 
as the explicit form of the (nonanalytic) function J(t) 
giving the value of the center of the set of all the ad
missible amplitudes, as well as the value of the radius 
lJ(t)/Co(MIE;t) of this set. So far, the width of the error 
channel E was kept constant: The phYSically important 
variable-error case is discussed in the concluding Sec. 
5, where an out line of the L2-norm problems is also 
given, together with a discussion about the two minimal 
amplitudes, feo(t) (which approximates the best the 
histogram on r 1 at given M) and fMo(t) (the amplitude 
with least modulus Mo on r 2' at given E). Both extremal 
amplitudes, feo(t) and fMo(t), as well as fo(t), are con
tained in the circle of radius 1J(t) ICo(M IE; t) around the 
optimal function j( t). 

III. COMPUTATION OF €o[h;Mle] 

One of the problems described in Sec. 2 we shall now 
have to deal with is the construction of the holomorphic 
function - X~(t), which approximates on the unit circle 
r, in the best way, the nonholomorphic part h2(t) of the 
weighted histogram, i. e., 

(3.1) 

This is an important problem which has been under 
scrutiny for a long while by mathematicians, although it 
is virtually solved by the Schwartz lemma in the form of 
Pick and Schur, 12 which is nothing but a special case of 
the Lindelof principle. Nevertheless, the last-time 
powerful function-analytical methods (Nehari,13 and 
Krein14) have had a great impact on this problem, and 
in the present section we shall show how one can com
pute the constant Eo from Eq. (3.1) using the Foia~
Nagy lifting theorem. 15 More precisely, we shall give 
here an outline of the proofs which can be found in their 
full extent in Appendix A. As the construction of the 
function Xr(t), once the numerical value of Eo is known, 
is quite similar to that of all other Xl (t)'s satisfying 
(2.17)-(2.19), this second problem will be postponed 
until the next section. 

Let the x(e i8 ) be different functions, defined on the 
unit circle r, whose negative-frequency Fourier coeffi
cients coincide with the negative-frequency coefficients 
of the weighted histogram h(e i8): 

(3.2a) 

where Q _ is the projection operator on the space L 2elP 
of functions with negative frequencies only. We shall 
write Similarly to (2.16), 

x(e i8
) = Xl (e i8 ) + x2(e i8

), 

with 

Xl (e i8 ) = (1 - QJx(e i8 ) and x2(e i8) = Q_x(e i8
), 

so that (3. 2a) is nothing but 
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(3.2b) 

Let us now remark that, as the L 00 norm of a function, 

(3.4) 

is always greater or equal to its L2 norm, we have 

Eo = IIx°(t) ilL 00 :::> I Ix°(t) IIL2 E Ilx~(t)IIL2 + IIx~(t)IIL2 

:::> Ilx~(t)IIL2. (3.5) 

Owing to (3.2), we get 

Eo:::> II h2 ( t) II L2 E (~I Cn I 2) -1/2, (3.6) 

which, by the way, proves the existence of Eo as a posi
tive, not vanishing constant. 

Now, as it is less easy to handle the L" norm than the 
L2 one, following C. Foia~, one can transpose the whole 
problem into an L2-norm problem for the suitable cho
sen operators Yx closely connected to the functions 
x(e i8). Namely, if ep(e i8 ) is some general L2 function de
fined on r, we define 

Y xep(e i8 ) E X<e i8)*U'cp(e i 8), (3.7a) 

where we have denoted by Cp the "B-reflected" function 

(3.7b) 

and by U the multiplication operator with the factor e i8 : 

Uep l(e i8) = e i8ep '(e i8), 

U+ ep l(e i8 ) = e- i8ep '(e i8). 
(3.7c) 

As neither of the two operations (3. 7b) or (3.7c) change 
the norms, it is clear that the L2 norm of the operator 
Yx coincides with the maximum of the function x(e i8) on 
r, i. e., 

(3.8) 

The additional unit-norm operators contained in Yx apart 
from the function x(e I8) were taken precisely to secure 
the commutation relation 

(3.9) 

which is essential for the use of the Foia~-Nagy lifting 
theorem (see Appendix A). 

The crucial points of the proof (see Appendix A) are 
now the following two: 

Firstly, the special form (3.7a) of Yx enables us to 
show that the restriction X of the operatorS Q_Y; on the 
subspace L 2elP of the negative frequency functions ep 2 

=Q-ep, 

Xep2=QX;ep2=Q_x(e I8)U'Cp2' (3.10) 

depends solely [see further Eq. (3.15)] on the negative 
frequency part x2(e i8) of the function x(e I8); its L2 
norm-which, as we shall show, coincides with Eo and 
which, as X itself, is also completely determined by the 
Fourier coefficients c_1' c_2" •• of ~(ei8)_is obviously17 
smaller than the L2 norms of all the operators Yx cor
responding to functions x(e i8 ) with X2 E h2 : 

(3.11) 

The second important point is that, using Foia~-Nagy 
lifting theorem, 15,18,19 we can show that there exists a 
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function X = xO(eI8) satisfying (3.2), for which equality 
is reached in the inequality (3.11); this enables us to 
define Eo as the norm of X: 

EO= IIXII L2 = IIYxollL2 = IlxO(eI8)IIL~' (3. 12a) 

Indeed, combining (3.11) with (3.8), we get 

Eo < all other Ilx(e i8)II L .., with x2(e
i8) = h2(e i8 ), (3.12b) 

which corresponds to the previous definition (3.1) of Eo 
as being the maximum of the error produced by the best 
holomorphic approximant - X~ of h2 on r. The Foia!?
Nagy lifting theorem which made this point possible as
serts, indeed, that if we have two isometric operators 
T and T' operating in the spaces K and K', respectively, 
and if Sand S' are the restrictions of their ad}oints op
erators T+ and T'+ on the invariant subspaces He K and 
H'e K', and if the operator X transforms the subspace 
H into H' and satisfies the commutation relation XS 
=S'X, then there exists an extension Yo of X transform
ing K into K' and satisfying YoT + = T'+Yo, whose norm 
coincides with that of X. Now, to prove (3. 12a), one has 
to take T= U and T' = U+ [see Eq. (3.9)] and apply the 
Foia!?-Nagy theorem twice (see Appendix A), once with 
K = L2 and H =H' = K' = L 28H2 and once with H = L 28H2 
and K =H' = K' = L2. Further, one defines xO(e i8 )* to be 
that function one would get if one applied the minimal
norm operator Yo to the constant function 1 (and multi
plied it by e+I 8): 

xO(e i8)* = e i8Yo1 = UYo1. 

Reciprocally, one can express then the minimal opera
tor Yo in terms of XO in the way of Eq. (3.7a). Indeed, if 
cp(e i8) is any L2 function defined on r, 

cp(e i8)=I:a ein8=~a (u+)n1 
_GO n _00 -n , 

owing to (3.9): 

Hence, 

IIxoIlL~== II YoII L2= IIXII L2 -'S II YxllL2 = IlxllL~ 

and the proof of relations (3.12) is now complete. 

Once the identity between the L" norm of the optimal 
function XO and the L2 norm of the operator X has been 
established, one can evaluate Eo numerically as the 
square roofof the greatest eigenvalue of the Hermitian 
operator XX., that is, 

(3.13) 

A matrix representation for X to be used in (3. 13) can 
readily be found in the basis spanned by the eigenvectors 
e- i8 , e-218 , e-3i8 ,'" of the L 28H2 subspace. Indeed, by 
taking CP2 = e-1k8 from (3.10), it follows that 

n=oo 

Xe-1k8 = Q_x(ei8)U+e+lk8= Q_ L: c
n 

exp[i(n + k -1)0], 
n=-CIO 

(3.14) 

so that, putting I k)= exp(- ike), k= 1, 2, 3,"" we have 

(jl XI k) = c_ (k+i-l)' 

Thus, 
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(3. 16a) 

where c_l> c_2 , • ", are the negative frequency Fourier 
coefficients (2. 16d) of the weighted histogram. (Such a 
matrix is usually called a Hankel-matrix). In practical 
calculations one could set to zero in (3.16) all c_n with n 
greater than a certain N, sufficiently so that 

(3. 17a) 

would approximate sufficiently well h2(e i8); usually a 
fairly good approximation of Eo is reached with (3.12) in 
few N' -steps at a computer. However, one could spare 
computer loading [by smaller (3.16) matrices], using in 
(3.16) a quicker converging trigonometric series (for 
instance, the Fejer series C~k = (1 -l/k)c_k or, better 
yet, the Chebysheff approximation), instead of the Fou
rier coefficients c_n ' Indeed, if 

N 

h~ (N)(e i8) = 6C~n exp( - inO), 
n=l 

(3.17b) 

with 

sup I h2(e i8) - h~ (N)(e I8 ) I == 1/(N), (3.18) 
O"8(2v 

[for a given N, 7J(N) is the smallest when (3. 17b) is the 
Chebysheff approximation of order N to h2 ], we have 
quick estimate of the accuracy with which E ciN ), com
puted with the help of the truncated matrix 

l :~: :~: ::: ~~N! 
X(N)= • , 

C~N 0 ... 0 

(3.16b) 

represents the true Eo. Indeed, from the previous theo
ry it follows that if there exists a holomorphic function 
_X~(N) which approximates in the best way on r the neg
ative frequency function h~(N), we have 

(3.19) 
as well as 

Eo= I X~ + h21 < sup I X~(N) + h~(N) + h2 - ~(N) I-'SEaN ) + 1/(N). 

Hence, 

(3.20) 

so that, if the series (3. 17b) approximates fairly well 
h2' the constant EaN) computed via (3.13) and (3. 16b) 
represents well the actual value of Eo. 

From (2. 16d) and from (3.16) it is clear that Eo is a 
functional of the histogram hU;) and a function of the 
ratio M/E: 

(3.21) 

In general, Eo is not the smallest E for which there still 
exist holomorphic functions bounded by M on r 2 (1. 2) and 
satisfying (1. 1). Nevertheless, Eo[h;M /E] being the 
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smallest possible deviation on r l + r 2 of an analytic 
function loU:) from the M IE Carle man weighted histogram 
h(I:), we obviously have 

(3.22) 

so that the decreasing series EI > E2 > Eg > •.• defines a 
minimal E, 

Eoo=limEn (> 0), 
n~ 00 

satisfying the trans cedent equation 

Eo [h;M IEoo] = Eoo' 

The corresponding lo(t) amplitude 

IJ oo(t) - h(I:)Co(M IEoo; 1:) I r =Eoo 

defines the minimal function 

f'o(t) =1 oo(l:)/Co(M lEoo; 1:), 

If'o(l:) I r 2 < M, 

If, (1:) - h(l:) I r ,,; Eoo, 
o I 

(3.23) 

(3.24) 

(3. 25a) 

(3. 25b) 

the smallest value of E for which such an analytic func
tion still exists. The value Eoo can be found either as the 
limit (3.23), computing step-by-step Ek (3.22), or di
rectly, solving the trancedent equation on a computer, 
combining (3.24) with (2. 16d), (3.13), and (3.16). 

The second external problem consists in finding the 
amplitude fMo(!;) of least module M =Mo on r 2, E being 
now fixed. As in (3.24), one would first have to deter
mine Mo from the equation [for a proof see (5. 34)] 

Eo[h;Mo/E]=E (E being given) (3.26) 

and then, using the methods of the next section, build 
the function fo(!;) corresponding to Mo and E: 

fM o{I:)=10(t)/Co(Mo/E;I:). (3.27) 

We shall come back to this problem in Sec. 5. 

IV. CONSTRUCTION OF THE SET OF ALL 
ADMISSIBLE AMPLITUDES 

Once we have computed the constant Eo, we turn back 
to the effective construction of all analytic functions J{!;) 
satisfying (2.7): 

IJ(t)-h(!;)l r +r <E. (4.1) 
I 2 

Of course, (2.19), E has to be greater than Eo, which 
is the smallest value of E for which the set of admissible 
functions is not void; all the extremal functions 1 o( I: 
1 o(t), 1. (1:), and 1M (!;) are then constructed in a similar 

o - 0 [ way to all other f{l:) there is still a difference, as will 
be seen, namely, that the function l/JN( ) for fo(l:) reduces 
to zero, but this happens in an automatic way if E is set 
equal to Eo], by simply replacing E by the corresponding 
Eo [by Eoo if the Carleman weight was Co(M IEoo, !;), or by 
E if one has used Co(Mo/E, !;)]. 

According to (2.13) each admissible function 1{1:) con
tains besides the holomorphic part ~ (I:) of the weighted 
amplitude, 

- 1 f. h{!;') ~(t)=~ ;;;---s: d!;' (!;ED) , 
71'Z r l +r 2 " -" 

(4.2) 

a supplementary holomorphic part, also, - Xl (!;), 
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which (2. 17) approximates the negative frequency part 
~(I:) of the weighted histogram 

J(I:) = hI (!;) - Xl (t), 
(4.3) 

[In contradistinction with the L2 norm problem (see 
Sec. 5), where, owing to the orthogonality of the posi
tive and negative Fourier components, one cannot ap
proximate ~ by analytic functions in D. ] In what follows 
we shall suppose for the sake of simplicity that the non
holomorphic part ~(efe) of the weighted histogram con
tains only a finite nu~ber 1. N, of negative frequency 
Fourier coefficients (h2 = hJN) so that the function 

l/Jo(l:)= !;N (XI(!;) + 1i~N)(I:))= I:N x(I:) 
E E 

(4.4) 

is holomorphic inside D. Moreover, according to (4.3) 
we have 

(4.5) 

for every I!;I ,,; 1. Finding all amplitudes satisfying (4.1) 
reduces thus to finding all holomorphic functions sati
fying (4.5), and having N preassigned Taylor 
coefficients: 

l/Jo,o=c_NIE, l/JO,l=C_<N_l)lE, •• ·l/Jo,N_l=C_l/E. (4.6) 

This problem can be solved in a simple recurrent way. 
Indeed, if the unity-bounded function l/Jk-l{I:), 

Il/Jk-l{!;) I,,; 1, I!; 1";1, (4.7) 

has N - (k - 1) preassigned Taylor coefficients 

..!. dipk-l{l;) I - ,I, (given for all 0 ";J'''; N - k), 
k I dl:} c=o - 'l'k-l,J 

where 

I l/Jk-l,O I ~ 1, 

the function 

l/I (!;) -! Pk-l(l:) -Pk-l.O 
k - I: l-l/Jk-l(I:)l/Jt-l,O 

is also unity-bounded, 

(4.8) 

(4.9) 

(4.10) 

(4.U) 

analytic in D, and its N - k first Taylor coefficients are 
completely determined by the first N - k + 1 coefficients 
(4. 7) of l/Jk-l{!;)' (The reverse statement being also 
valid): 

,..1 
(~n+l k ) I ,1,* 0::1 kf-U 

,I, _ "" Ld:l f 'I'~I,O ,1"'1 ••• ",kn+l (4 12) 
'fk,n-Ukll •.. kn+lt(1-1l/i~l,oI2)'I'k-l,1 'l'k-1,n+U • 

where the sum ~ is extended to all combinations of non
negative integer k j with 

(4.13) 

The inequality (4. 11) does not assure that l/!k,O satisfies 
the inequality (4. 9) too, but this really happens for e > Eo. 
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Going further, one finally gets a holomorphic function 
i/lit), which, beside the inequality 

Il/IN(t)I<1,ltl.;;1, (4.14) 

is completely free of supplementary conditions. 

Hence, using the inverse of (4.10), 

(4.15) 

one finally gets the whole family of functions l/io(t) satis
fying (4.4) and (4.5), in terms of a general, unity
bounded function l/iN(t), and, of course, depending on 
the negative Fourier coefficients col> ••• , coN' (2. 16d), 
of the weighted histogram [via Eqs. (4.6), (4.12), and 
(4.15)]. Once one knows the functions l/IO[I/> I(t), the most 
general holomorphic function satisfying ute conditions 
(1. 1) and (1. 2) is given in the approximation 

h2(t) .. iii!{)(t) = tc_kt-k (4. 16) 
k=l 

by 

f($ l(t)=[~W+hrl(t)-(E/tN)l/IO('" l(t)]/Co(M/E,t), 
N N 

(4.17) 

where ~ is given by (4.2) [see also (2.1), (2.5), and 
(2. 16d)]. Of course, the negative powers of t cancel out 
identically, owing to Eq. (4.4). 

If in Eq. (4.4) one puts e=Eo[h;M/E], at least the last 
(k=N -1) of the constants l/Ik 0 has to be unimodular. If 
this were not the case, one ~ould find a condition-free 
N unity-bounded iterate l/IN(t), and this would be possi
ble by continuity also for an E slightly smaller than Eo, 
when, by definition there are no more solutions. Thus, 
if l/Ik,O infringes inequality (4.9), 

Il/Ik,ol = 1 (4. 18a) 

from (4.11) and from the principle of the maximum of 
the modulus [l/ik,O=l/Ik(O)!], one gets 

l/Ik(t)""l/Ik,o (E=Eo), (4. 18b) 

and the extremal weighted function j oU;) can then be 
built again in a recursive (4.15) way; but, starting from 
the last not vanishing function l/ik(t), given by (4. 18b), 
rather than from l/iN(t), 

foW = ~(t) + h~W - (EoltN)IPO(t)Co(M lEo, t), (4.19) 

where in, contradistinction to (4.17), l/io(t) is complete
ly determined in terms of the Fourier coefficients con 
(1 .;; n .;; N) of ii2W, Unless E = Eoo [and hence foW = f. W] 
or M =Mo [see (3.26): foW =fM W], the amplitudes foW 
have no special physical meani~g; nevertheless, one 
should notice that for every weighted function 'o(t) one 
has the interesting property 

IjaW -ii(t)l r .r =Eo[h,MIE] (= const) , (4.20a) 
1 2 

and hence 

Ifo(1;) -h(1;)l r1 =Eo, 

lfo{t) I r =MEok 
2 

(4.2Ob) 

Equation (4.20a) is a consequence of the fact that if 
l/Ik(t) = l/Ik,O' the modules of all the functions l/iJ(t), },,;:; k, 
are equal to one for the boundary points I tl = 1 and thus, 
owing to Eq. (4.4), with E replaced by Eo, 
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- - If If oW - h(t) I cET =Eoll/lo(t)/t I tEr=Eo, 
which proves (4.20a). 

In practical extrapolation problems it is perhaps more 
important to know the value }(t) and ~W=1)(t)/co(l:) of the 
center and of the radius of the set of values of all the 
admissible functions f(~MJ(t) in a given point t, rather 
than the admissible functions themselves. One can read
ily prove that, in every point t, this set of values fills 
densely a circle. Indeed, if in the recurrence formula 
(4.15) with fixed t and l/Ik-1 0 the possible values of l/ikW 
fill a circle of center y k an'd radius 1)k 

l/Ik(t)=Yk+Cl1)kei8, 0";:;Cl,,;:;1,0,,;:;{3,,;:;21T, (4.21) 

then the values of l/ik_1(t) will fill a circle too, whose 
center and radius are given by 

__ 1_ (1- (1 - I l/Ik-1,ol 2)(1 + Pk_1,ot*Yt») (4. 22a) 
Y k-1 -l/It-1,0 11 + l/ik_1,Ot*Y: 12 - l1)kl/ik_1,otl 2 , 

~() 1)kltl(1-Il/ik-1,012) 
1) t = 1)k_1 = 11 + ,I, t*y* 12 - 11) ,I, t1 2' 'I'k-1,O k k'l'k-1,O 

(4.22b) 

Since the values of the arbitrary functions l/iN(t) just 
fill-at fixed t-a circle of radius 1 and with the center 
in the origin, we have 

YN "" 0, 1)N""1. (4. 22c) 

Using (4. 22a) and (4. 22b) in a recurrent way, one gets 
finally Yo(t) and 1)o(t), as well as the center and radius 
of the (unweighted) admissible functions: 

jw "" f<t) ICo(M IE, t) = [ii1 (t) + ii~N l(t} - (E/tN)yo(t)]/ 

eo(M IE, t), (4. 22d) 

~W = 1)W/I Co(M /E, t) I = E'T/O(t) II tNCo(M IE, t} I. (4. 22e) 

Again, no poles appear in (4. 20d), (4.20e) at t= 0, as 
one can see from (4.4) and from the denominator of 
(4.22b). One should also notice that for I tl = 1 

'T/(t)=E, tEr 

jW=ii(t), tEr, 

(4. 23a) 

(4. 23b) 

(see Fig. 3), but for I tl < 1, 'T/(t) is usually much smal
ler than E (see Fig. 4). This phenomenon is especially 
apparent when E is only slightly different from Eo, when 
some of the I l/ik-l 0 I are close to 1 and, thus, the numer
ator of the formu'las (4. 22b) is small. 

If E = Eo, 'T/k vanishes identically for tED [(4.22)], while 
for the boundary points we get the equations (4.20), i. e. , 

Ijow - hW I r = Eo = const. 

V. CONCLUDING REMARKS AND THE L 2 

PROBLEM 

A. Review of results 

(4.24) 

It has been shown in the previous sections that, given 
a data function h(z) ("the histogram") along some finite 
parts r 1 of the cuts r of the amplitude, together with an 
error channel of width E (1. 1) and with a bound M (1. 2) 
for the amplitude on the remaining parts r 2 = r"r1 of 
the cuts, one can effectively construct the set of all ana
lytic functions compatible with this input information. 
As it was shown in Sec. 4, the set of the values of all 
these possible ("admissible") amplitudes fill at each z 
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a disk (see Fig. 4) whose center jW=j(t)/CoW and 
radius ~(t) = 17(t)/1 Co(t) I can be computed [see Eqs. 
(4. 22d) and (4. 22e) at each point t= t(z) (see caption of 
Fig. 2) in terms of E and M and of the negative Fourier 
coefficients c. l , c.2,· •• in the t(z) complex plane of the 
weighted [see Eqs. (2.1)-(2.3)] histogram ii(t). There 
is no holomorphic amplitude at all, compatible with the 
initial conditions (1. 1) and (1. 2), if E is smaller than the 
important constant Eo-the norm of the matrix X (3. 16), 
defined in terms of the negative Fourier coefficients 
col' C_2,···. In the limit E=Eo, there remains a unique 
admissible amplitude fo!t) =foW/CoW, as in this case 
the radius 17W- 0 and Jm- Jo(t). Generally, Jom is 
the "minimal" (weighted) amplitude, 1. e., that holomor
phic function which approximates best (4.24) the weight
ed data function h( t) on the boundary r. 

As was emphasized in Sec. 2, in the case when Eo«E, 
the center j( t) of the set of values in t of all admissible 
amplitudes fm differs little from the best weighted dis
persion relation extrapolated function h(t).7 Converse
ly, when Eo is close to E, most of the circle of the 
Nevanlinna error bound E/I C(t) I (corresponding to the 
circle of radius E of Fig. 4) is empty, the admissible 
amplitudes being clustered in a small circle around j( t) 
which, in general, may differ considerably from ii(t); in 
this latter case, the techniques developed in Secs. 3 and 
4 represent a net improvement over the Poisson weight
ed dispersion relations of Refs. 7 and 8. Nevertheless, 
in both cases the function J(t) [although nonanalytic, in 
contrast to the function fo(t) which, being itself an ad
missible amplitude, is holomorphic] is for each value of 
z the most unbiased estimate one can find for an admis
sible amplitude taken at random. 

B. Variable error channel 

So far the error -channel width E was regarded to be a 
constant. The physically important variable error case 
can be readily reduced to the former one using the tech
niques of Sec. 4 of Ref. 7, namely by introducing a sup
plementary weight function. 20 

C1 m =exp{- [wet) + iw(t)]}, (5.1) 

where 

._ ll· /2 e I8 '+t E(B') 
w( t) + zw(t) = -2 ~ In ( /2) dB'. 

1T -.12 e - !, E 1T 
(5.2) 

Thus, the variable error channel conditions (t= e I8), 

If(t)-h(t)I~E(B) for -1T/2<B<1T/2, 

If(t)1 ~M for 1T/2 < B < 31T/2, 
(5.3) 

reduce to the constant error ones for the weighted func
tions C1m f(t) and C1(t)h(t): 

IC1(t}fm-C1(t)h(t)I~E(1T/2) for tEr1 , 

I C1(t)f(t) I ~M 

and one then proceeds as in Sec. 4. 

C. A probabilistic approach: L - versus L 2 problems 

(5.4) 

(5.5) 

We should like now to outline how the similar, but 
much Simpler, L 2 -problem can be solved. This problem 
can be connected in a natural way3 to the X2 test if one 
makes the assumption that the data have a normal 
(Gaussian) distribution around the true amplitude. [It is 
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well known that if ~I are independent random variables 
of class N(O, cr} (centered Gaussian distributions of dis
persion cr), the random variable 17 = ~~=1 ~~ follows the 
usual X2 distribution, being of class H(S, cr).] However, 
we should like to stress that the L2 norm does not ex
haust the possible connections with statistics; moreover, 
one can relax the normality assumption by using param
eter free test of the Kolmogoroff type, 21 which lead to 
L" norm problems, but which are much less known 
among physicists than the X2 one. For instance, if one 
takes a sample of volume n from an ordered population 
{n subjected to a certain repartition law22 F(~} yet un
specified) and if ~(1) and ~(n) are the minimal and the 
maximal value ~(j) of the sample so that 

~(n) _ ~(1)=supl ~(f) _ ~(j)l, (5.6) 

then the probability P of finding a value ~ outside the 
range (~(1), ~ (n» with a probability greater than a /n, 
equals asymptotically a universal function of the param
eter a. Indeed, it can be proved23 that 

P= 10" hex) ax, 
where, asymptotically, hex) is the convolution of two 
Y(l} (pure exponential) distributions 

g(x) = e-X (asymptoti cally) , 

{
foX g(x - y}g(y)dy =xe-X for x;" 0 

h(x)= 0 ., <0 
~or x • 

Hence, 

limP{l- [F(~(n» _F(~(l»] < a /n} 
n- .. 

(5.7) 

The fact that Eq. (5.7) is irrespective of the actual 
form of the repartition law, F(~) has a great theoretical 
importance, especially when the values for the random 
variable ~ are not obtained by measurements of the 
characteristics of some palpable object, but, rather, 
are inferred themselves from some empirical reparti
tion laws, as in the case of the scattering amplitude. 
Moreover, one could also write down the exact (nona
symptotic) form of Eq. (5.7), so that one could find the 
exact value for the volume n of the sample, in order to 
have all ~ inside the range ~ (1 ), ~ (n) with a probability 
greater than a given number, to a specified confidence 
level. For example, if the confidence level is 0.05 (P 
=0. 95) and if the probability of ~ lying between ~(1) and 
~(n) is 99%, we find n=473. It is apparent that Eq. (5.6) 
leads to the L" problems of the previous sections, but 
this question needs more elaborations and will be 
treated elsewhere. 

One of the first questions one could ask in connection 
with the L2 problem might be that of finding those "am
plitudes" which minimalize the L2 norm (over the r 1 cut) 
of their difference to the histogram h(t}, 1. e., those 
functions which minimalize the lhs of the inequality 11. /2 

IIf-hll~hr )=- p(B}lh(e i8)-f(e I8 )1 2dB<E, (5.8) 
1 1T -./2 

where p(B} is a suitable weight function. Obviously, this 
hardly could be the correctly posed physical problem, 
Since, for instance, if one had to solve this problem for 
a finite sum (the discret points case) instead of the inte
gral of the lhs of (5. 8), one could reduce the sum to 
zero taking high enough polynomials; but, of course, the 
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higher the degree of the polynomial, the stronger it 
would blow up outside the range r 1 of energies in which 
the data points were given! Therefore, as it was dis
cussed in the Introduction, one would have to add to 
(5. 8) supplementary stabilizing physical information, 
which, in the context of the L2 norm problems could be 
of the form 

1 i 3W
/

2 

IIfll~,2(r )=- P2(9)lf(e!9)12d9<.A{2. 
2 1T W /2 

(5.9) 

D. Simplified L 2 problem 

An incomplete but very simple way of treating this 
problem is the following: Divide (5.9) by.A{2 le2 and add 
it to (5.8) and try to find the Carleman weighted function 
J=Cofwhich minimalizes the L2 norm integral over the 
whole unit circle r 1 + r 2: 

2~.L Ih-fI2ICoI2p(9)d9=IIJ-iill:2(rl+r2)' (5.10) 
r 1+r a 

where, as in Sec. 2, ii(elS) was settled equal to zero on 
r 2' Obviously this new formulation of the problem de
parts from the previous one as the minimum of (5.10) 
by no means implies the minimum of the lhs of (5.8) un
der condition (5.9); furthermore, we shall show how24 

the initial problem can be answered in a correct way. 

In contrast to the L" problem studied in Secs. 2 and 
3, the solution of this simplified L2 problem is immedi
ate: First, define a new external ("Carleman") function 
C pet) satisfying on the unit circle the condition 

Icpmlr=~' (5.11) 

so that [see (5.1) and (5.2)] 

(
1 1 r w e

l8 + t ) C pet) = exp '2 21T J 0 el8 _ tlog[p( 9) ]de . 

By introducing the weighted functions 

h(t)=Co(t)Cp(t)h(t) (tE r), 

l(t)=co(t)Cp(tlf(t) (tED), 

(5.12) 

(5.13) 

(5.14) 

our problem reduces to finding that analytic functionJ 
which minimalizes the unweighted L2 norm on r= r 1 

+ r 2 ; 

IIJ-hIlL2<r) = [211T Ir Inel8) _h(eI8)12d9r/2 <e, (5.15) 

with the obvious solution 

f,- (t) =h (t) =..L r h(t')Co(t')Cp(t') dt' 
min 1 21Ti Jr t' - t ' (5.16) 

which is the direct consequence of the orthogonality of 
the positive and negative parts of 1-h on r: 

111- h"~2 = 111- hl"~2 + "ka"~2. (5.17) 

In contrast to the L" norm problem where the minimal 
functionJo differs in general from the optimal approxi
mation], the center of the whole set of functions satis
fying (5.15) coincides with Imin(t) defined by (5.16); in
deed, owing again the orthogonality of the positive and 
negative frequencies on the unit circle r, a general L2 
admissible function can always be written in the form 

l(t)=fmin(t)+i;(t) [fmln(t)=h1(t)], (5.18) 

where 1;(t) is an arbitrary holomorphic function whose 
L2 norm is smaller than 

J. Math. Phys., Vol. 14, No. 11, November 1973 

1II;.IIL 2(r) < V2 -E~l/2, 

where 

ell:! = Ilh2 I1 L 2(rJ' 

Indeed, 

1685 

(5.19) 

(5.20) 

111- hll~2(rJ = 111- hl11~2 + Ilkalli2 = II~IIi2 +E~. (5.21) 
·of course, using L2 conditions on r, one loses informa
tion about the behavior of let) in the special points t, so 
that the radius. 

(5.22) 

Of the set of values of the possible admiSSible L2 
weighted function around 1min(t) exceeds considerably 
the L" one, being equal to 

(5.23) 

(see Appendix B), and blows up when t goes to the 
boundary r. 

E. Complete L 2 probiem 

The logical drawback of this simplified approach is 
connected to the fact that the error channel condition 
(5.8) and the stabilizing condition (5.9) "mix" in (5.10) 
in an uncontrollable way. This mixing can be changed 
by changing the weight function p(9) on the unknown cut 
by some given multiplicative factor-this amounts to the 
introduction in (5.10) of a supplementary Carleman 
function Co(t)-but, nevertheless, the mixing will sub
sist. The proper way to handle this problem is to look 
to all holomorphic functions satisfying (5. 8fand (5.9) 
separately. This question was solved by Sabba 
Steianescu24 orthogonalizing the first N (N = sufficiently 
large) powers of t on both r 1 and r 2 • For instance, one 
could first find, in a progressive way, the first N 
polynomials P,;(t) of degree n, which are normal and 
orothogonalon r 1 to all other polynomials of degree less 
than n. P,,(1)(t) are nothing but the Legendre polynomials 
of the curve r 1 and, of course, are not orthogonal also 
on r 2 , so that we can write 

! r W

/

2 
p(I)(eI8)p(ll*(eI8 )d9=li 

1T }-W /2"1"2 "1"2' 

_ p(ll (eI8)p(l) (eI8) de = B 1 i 37
/

2 * 
1T 7 /2"1"2 "1"2 ' 

where B"l"2 is an NXN Hermitian matrix. Sabba
Stefanescu then diagonalizes this matrix through a 
suitable basis change, 

N 

<P (t)=~ u pU)(t) 
'" 1 nan n , 

(all ;\.'" >0). 

(5.24) 

(5.25) 

(5.26) 

(5.26) 
In contradistinction to the Legendre polynomials 

p"U) on ru all <p"(t) are of degree N and their coeffi
cients change when N is changed (to simplify the nota
tions, we have dropped the index N on which they de
pend). SpeCific convergence problems arise in the in
finite dimensional Hilbert, but they are carefully dis
cussed in Ref. 24. If the h~N) are the expansion coeffi
cients of the histogram in terms of <p"(t) on r l' 
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h(N) = - h(ei9)iP*(eI9 ) de 1 1.</2 
" 11 -./2 " , 

(5.27) 

the conditions (5.8) and (5.9), for an admissible poly
nomial f(N)(b) of degree N, are 

~ 1 h(N) _fIN) 12 <e2 
I I I N 

X h(eI9 ) de 12 

and 

~ i\ 1 F(N) 12 <:m2 
i I JI , 

(5.28) 

(5.29) 

so that the set of the admissible functions f(N)(b) is the 
N dimensional Hilbert space region common to the 
hypersphere (5.28) centered around h(N) (t) and the 
hyperelipsoid (5.29) with the center in the origin of the 
Hilbert space. If, as usually, IIh1lL 2(r »E, Le., the 
origin is not contained in the sphere (5.28), there exists 
a smallest :m =:mo below which the ellipsoids no longer 
intersect the spheres: 

(5.30) 

where the :m~ are that:m for which the N-dimensional 
spheres (5.28) and ellipsoids (5.29) are tangent. It is a 
simple geometrical matter to find also the components 
of the tangent point vector fri~>' the setfo(N)(1;) 
='2Jo(,~)IP:(b) converging to the minimal functionf:m:o(1:). 
It is quite obviOUS (if two N + 1 dimensional bodies are 
tangent in a N dimensional subspace, they have certainly 
at least one common point also in the N + 1 dimensional 
space) that 

(5.31) 

so that the :m~ represent upper valued estimates for 
:mo; a lower bound for:mo is yielded by the minimal :m 
of the simplified L2 problem approach (5.10), namely 
lowering the parameter of the Carleman function Co un
til there remains only a Single admissible amplitude 
(5 . 18), L e ., until 

I/h1lL2 (r )=E, 
1 

such that Illl WII L 2(r
l

) =0 see (5.19). 

F. The analogous Mo problem for the L ~ case 

(5.32) 

As we have already shown at the end of the Sec. 3, 
there exists a minimal value Mo also in the L'" norm 
problem, under which there are no more analytic func
tions satisfying (1.1) and (1.2). LetM2<Ml and let 
EOI (i = 1,2) be the smallest (L "') deviations of a function 
holomorphic in D from the (i=1,2) weighted histo
grams h(j)(t)=h(b)Co(M/E,b). Since25 

ICo(Ml/E'b)1 _{1, onrl 
CO(M2/E , 1;) r - M2/M l < 1, on 1;, 

we get 

1

]<2) Co (Ml/E, b) _h(2) Co (Ml/E, b) I _{E02' on r 1 

Co (M2/e , b) Co (M2/e ,b) r - <e02 ' on r 2· 

Since h(2)(1;)Co(M l /e, b)/Co(M2 /€, b)=h(l) (6), from 
the definition of EOl we have to have eOl <E02 ; moreover, 
as it was shown in Ref. 25 this inequality 1s strict. 
Hence we get the important monotony property 

eo[h;Mr!e]<eo[h;M2/e) ifM1 >M2. (5.33) 
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Thus, decreasing M, we see that eo increases until it 
reaches, atM=Mo, the actual value ofe: 

eo[h;Mo/e)=e [=(3.26)]. (5.34) 

There are no admissible amplitudes for M less than M o' 
Since, owing to (5.33), eo(M) would have to be greater 
than the channel error width e. The numerical value of 
Mo can be determined from Eq. (5.34), computer pro
gramming being much facilitated by the monotony 
property (5.33) (computer programmes are available at 
request, both for M 0 and for :JIlo). The corresponding 
minimal amplitude, 

(5.35) 

is of course unique and does not depend on M (the 
stabilizing lever of this L" problem), being a charac
teristic function of all the (M -dependent) sets of ad
missible amplitudes (4.17). If no information exists 
about the possible range of the true value of M, the 
minimal function fM (b) could be used as a first refer-o 
ence for the amplitude. Owing to the fact that for every 

u 

E 
.c 

• 

/' "\ 
/3 -. T 

~ ... ,oog~;, \ I--Mtrue 
+.",,- +, \ 
\ S=O 025 T,+ 

--- "T Position of true zero 
./ 

o 

FIG. 5. Typical dependence (see Ref. 26) of Mo versus the lo
cation of the artificial pole 1;0 = I;(z~){here, I;(z) 
= [30 - z + i1I195z(z - 4) 1/(14zo - 30)j of the function Fl (z) I 
[( I; - 1;0) /( 1- 1;01;) I, introduced in order to locate the zero of the 
model amplitude F t(z)=(1-V4-z)/(1+V4-z). The dip corre
sponds to Zo = 3, where the artificial pole disappears identical
ly. Upper curve corresponds to 1% errors, while lower curve 
to 5% ones. 
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FIG. 6. Typical dependence of Mo versus the location of the ar
tificial zero Co = C(zo) of the function F 2(z)(C - Co) 1(1- Co C) , 
where F 2(z) = 11Fl (z) of Fig. 5. 

L'" -minimal function, the module I Ii -10 I is constant 
along r 1 +r2 and equal to Eo [see (4.20)], IfAfo(t) I =Mo 
on r 2 and, hence, its L2 norm on r 2 coincides with Mo. 
Thus we get the inequality 

(5.36) 

G. Detection of singularities 

On the other hand, M o, as well as ~o' could be useful 
tools in a great variety of problems. For instance, they 
provide a sensitive device in the location of the zeros 
or poles of the amplitude. 26 For instance, if the ampli
tude A(t) has some zero in D, the function 

A(~) 
fW = (~ _ ~o)/(1 - ~t~) (5.37) 

whose "histogram" h(~) can be constructed simply on 
r 1 from the data function for the amplitude, would be 
nonholomorphic in D unless the parameter to has ex
actly the value of the zero of A. The curve Mo(to) (see 
Figs. 5 and 6), and Ref. 26) is very sensitive to that, 
especially when the error corridor is not too large; in
deed, if E is small, it would be very hard, i.e. , Mo 
would be very high-to find holomorphic function ap
proximating the histogram of a nonanalytic function! 
If some theoretical information is available (unitarity, 
Froissart bound, etc.) limiting the upper value of M 
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(the dashed lines M=Mtrue of Figs. 5 and 6), then the 
only possible values of to are those for which Mo(i;o) 
< Mtrue ' the distance between the Mo curve and the line 
M =M true defining a sort of probability distribution for 
the location of the zero (poles) of the amplitude. One 
should notice in Fig. 5 the extremely steep wall on the 
right of the dip corresponding to the true position [for 
~o= O. 55, the two Mo values are 2.9 x 104 and 4 x 107 re
spectively! ] of the zero, which is due to the artificial 
pole moving towards the physical cut r l • In Fig. 6 the 
two branches of the curve are more symmetriC, al
though also high, since here the pole is fixed, the artifi
cial zero, here, being moving. 
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APPENDIX A BY C. FOIAS 

The aim of this short note is to give a comprehensive 
general foundation in the frame of the nowadays ab
stract operator theory for some of the mathematical 
questions considered in the present paper; it is hoped 
that this treatment might be useful also in other re
searches in the analytic theory of strong interactions. 

Let K and K' be two Hilbert complex spaces. Let T 
and T' be two isometric operators in K, resp. K', i.e., 
linear operators such that 

rrT~f/=II~!!, !IT'~'!I=II~'/I 

for all ~ IE K, ~' IE K', where /I ./1 denote the norms in 
K and K'. We recall that a (closed linear) sub-
space H c K (resp. H' c K') is said to be invariant to T+ 
(resp. To.), the adjoint operator of T (resp. T') if 
T+Hc-H (resp. T!+H' CH'). Denote now by S (resp. S') 
the restriction of r (resp. T'+) to an invariant subspace 
H (resp. H'). Let Y be an operator from K in K' inter
twining r+ and T'" i. e. , 

Yr+=To.y, 

and verifying 

YHcH'. 

(At) 

(A2)' 

Let X denote the restriction YI H of Y to H. This is ob
viously an operator from H to H' verifying 

XS=S'X and !lXII.,; /lY/I. (A3) 

(where, let us recall, the norm of an operator, say X, 
is defined by 

/lXI! = supIlX~II, 
where the supremum is taken over all ~ in the domain 
of X (i. e., ~ E H), verifying II ~II =1 . 1 
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Conversely, the following is valid (see Ref. 
15) : 

(I) Let X be any operator from H in H' such that 

S'X=XS. 

Then there exists an operator Yo from Kin K' verifying 

(A4) 

Remark: Let us remark that II Yoll is the infimum of 
the norms of all operators Y such that YIH =X. 

We introduce now some notation of functional spaces. 
Let L2 be the Hilbert space of function defined on 
fiE [O,21T], cp(eI8), with the following scalar product: 

(cp, I/J) = 211T fa 2. cp(eI8)1f;*(eI8) dB, 

representable as cp(eI8)=L:' .. ane 1nll with L:'..lanI 2<00. 

Let ~ be the subspace of functions representable as .. 
cp(eI8)=~ a e1n8 
; 0 n , 

with positive frequencies only. 

It is clear that every function cp(eI8 ) = ~ ane
l8 E ~ 

may be extended in a natural way to an analytic function 
cp(z)=~ anzn, whose boundary values lim,..lCP(ReI8

) coin
cides a.e. with cp(eI8) (see Ref. 16, Chap. m). 

We shall denote by U the unitary operator in L2 de
fined by U cp(e 18) =: e 18 cp(e 18). Obviously UH2 c H2 (i. e., ~ 
is invariant to Uland shall denote by UI H 2 the restric
tion to ~ of U. This is an isometric operator in~. 
The space of all functions X l(Z) bounded and analytic for 
I z I .;; I is denoted by 3('- and it is included in a natural 
way in ~, but it is endowed with the L'" norm: 

IIxl(z)IIL ",=ess. SupIXl(e I8)1. (A5) 
0"8<2' 

(Essential superior means the superior on a given 
set, modulo a set of measure zero.) 

Obviously fr= U-1 is given by frcp(e I8) = e-I'cp(e I8
) and 

U-l(L2e~)cL2e~ (where L2e~ denotes the orthogonal 
supplement of H2 in L2). Let us denote by Q+ and Q_ the 
orthogonal projections of L2 into H2, resp. L 2eH2, i.e., 
for cp=~":aneI8, .. .. 

Q "a e lnll = ~a eln8 
.L.i n n' - (A6) 

Moreover, let us put U_= U+ IL2eH2. (As L 2eH2 is not 
invariant to U, we cannot write U_+= UI L2eH2, but 
U:=Q_U1 L2eH2.) Now let 

x(eI8
) = t cnelnll =h(e I9) 

be bounded, i. e., 

ess. supl1i(e I8
) I =lIhIl L '" <00 

0"6<2' 

(A7) 

be given; denoting by It .. " the inversion cp(el8) =cp(e-18), 
we define X for every cp 2 E L2e~ by 

XCP2=Q-<XU+(P2)' (AB) 

It is clear that X depends only on the negative index 
coeffiCients, c_r.' k=1,2, ••• , of x(eI8). Then 

XU_CP2 = Q-<xu+0~a) = Q-<XU+U(P2) 
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=Q_(XfP2)=Q_U(I-QJU+XfP2 

+ Q_UQ_U+XifJa = Q_UQJxU+. ifJ2) 

= Q_UXCP2 = U:XCP2' 

where we used, in order, 

Q_UQ+=O, U+(Xcp)=XU+cp 

(where cp E L2 and X is bounded) and 

Q_UIL2SH2= U:, 
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relations which can be easily verified. In this manner, 
if X is given by (AB), then 

XU_=U_+X. (A9) 

It is obvious that 

(AI0) 

and if X is defined in the same manner as X but with X 
instead of X, then 

(All) 

Moreover, if we consider in L 2e~ the orthogonal basis 
{e-InI}",.:i", then X corresponds to the mat,rix 

c_a C_3 C-4 

C_3 c-4 • 
c-4 • 

It is an easy matter to see that if such a matrix 

(A12) 

is given (this is a Hankel matrix) and if the operator X 
defined by it in L 2ena by the intermediate of the basis 
{e-InII}:~, then X verifies (A9). Apply now Theorem I 
in Sec. 1 with K=L2, T= U, 

H=L2ena, S=U_ and K'=H'=L2eH2,T'=U_, S'=U:; 

it results that there exists an operator Zo from L2 in 
L 2ena such that 

ZoU+=U:Zo, 

ZoIL2eH2=X, 

IIZoll = IIXII. 

(A13) 

(A14) 

(A15) 

Now apply again Theorem I with K=L2, T= U, H 
=L2eH2, S=U_, K'=H'=L2, T' =U+, S'=U and with X 
replaced by Zii: ZiP_ = UZii. It results that there exists 
an operator Yo from L2 in L2 such that 

YoU+= UYo, 

where 

(A16) 

Yo I LaeH2 = Z~, (A17) 

II Yoll = IIZ~II. (AlB) 

Then (AI5) and (AlB) give 

IIYoll = IIXII. (A19) 

(A16) reads also 

UY;= Y;U· (A20) 

and with (A14) and (A15) imply (for CPa, 1/J2 E L 2eH2) 



                                                                                                                                    

1689 S. Ciulli and G. Nenciu: Optimal analytic extrapolation 

(XCP2' l/J2) = (ZOCP2' l/12) = (CP2' Q_Z~%) = (CP2' Y0 l/12) 

= (Y;CP2' l/12) = (Q-Y;CP2' l/12)' (A2l) 

The projection operator Q_ is redundant in the last 
equality of (A2l), but we need it in order to have an 
operator under which the space L 2eJ[2 is invariant. 
Hence, 

(A22) 

Now denoting by I the constant function eO, and putting 
xO(e i8) '= e i8 Y;I, we have for any trigonometric 
polynomial 

cP = L; ane in8 = L; (u+)-nl; 
InlEN I"IEN 

hence by (A20) 

Y;cp=L;anU-nY;I=xoU+ip. (A23) 

By using (A23), it is now an easy matter to verify 
that XO is essentially bounded and that 

(A24) 

Finally, from (A23) and (A22) we obtain (A8). In this 
manner we have obtained the follOwing extrapolation 
theorem due to Z. Nehari l3 (see also Ref. 19): 

(n) Let 

(A25) 

be given and suppose that the matrix corresponding to 
X given by (AI2) defines in L 2eJ[2 an operator X of 
norm IIXII < ""; then, if Eo denotes the infimum of the 
IIxIlL" of all essentially bounded junctions X such that 
X2'=h2 (the negative frequency part of the histogram), 
where 

Q-x = X2' 
we have 

Eo=IIXII; 

(A26) 

(A27) 

moreover, this infimum is reached (namely such an 
optimal function is that constructed by the above succes
sive application of Theorem I). 

Remark: If C_I = 0 for k > N, then the norm of the 
operator corresponding to the matrix X given by (AI2) 
is identical to the norm of the linear transofrmation 
given by the matrix 

c_I C_2 C_I C_N+I 
c_2 C_3 c-4 coN 

XN= (A28) 

C-N+I CoN 0 0 0 
CoN 0 0 0 0 

in the N-dimenSional complex euclidian space. Since 
this norm can be computed easily as the greatest eigen
values of v'Xi,rXN' it is important to know if we may 
neglect the remainder of the terms expansion (A24). 

We shall give some properties related to the proced
ing theorem. 

First, let us remark that if h2 is a polynomial in 
e-in8 , say 'f!1 C_ke-ik8, then, since 
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{
XN o} 

X= 0 0 ' 
it is easy to see that the operator X is with finite-di
mensional range. Suppose now that X is continuous, and 
let 

(N)_ t (1- k-l) -ik8 X2 -k=l N coke (A29) 

be the Fejer-Cesaro sequence for its Fourier expan
sion. Then 

IIxiN) -XIlL" - O. 

Therefore, if X<N) denotes the operator corresponding 
to X~N), then instead of X2 we have 

IIX<N) -XII- 0 for N- "". 

In particular, (A30) implies 

IIX(N)II-IIXII. 

(A30) 

(A30') 

On the other hand, by the remark made above, X<N) 

is with finite-dimensional range, so that (A30) implies 
that X is completely continuous. But then there exists a 
cPg E L 2eJ[2, IIcp~1I = 1, such that IIXcp~1I = IIXII (take an 
eigenvector for the greatest eigenvalues of X+X). But 
then, using (A8), (A20), and (A24), we have 

IIXII=IIXcp~lI= IIQ_xoU+~~1I ,,; IIxou+~~1I 

= II xocpgll,,; IIxollL'" = I/Yoll = IIXII, 

so that 

IIx°ipgllL2 = IIxo II L'" • 

Hence, since (II cp~1I L2 = 1) 

IIxocp~IIL2"; IIxoIlL2I1cp~IIL2=lIxoIlL2"; IIxoIlL"" 

.we have IIxollL2 = IIxoIlL"" 1. e., we have 

2
1
7T Ia2~ (lixolli"1-lxO(e I8)12) d8=O, i.e., Ixol 

= IIxollL"' a. e. 

Thus, we obtain the following supplementary properties 
to the Theorem n: 

(1lI) Suppose that h2 is continuous; then the norm of 
the matrix [see (A29)], 

1 
C_I (I -1/N)c_2 •• , [1 - (N -1)/N]c.Nl X' _ (l-l/N)c~ (1-2:N)c~ •• , ~ ) 

.- [l-(N~l)/Nlc_N ~ 
(A31) 

in EN tends for N - "" to Eo' Moreover, there exists a 
unique XO such that 

(A32) 

and this verifies 

(A33) 

We have only to prove the uniticity, knOwing that any 
optimal X [i. e., verifying (A32)] satisfies (A33). To this 
pu:r;pose, let Xl to be another optimal function. Then, 
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x' =HXl +Xo) 

is still an optimal function, thus 

I X'(e I8
) I =Eo a.e., 

Le. , 

t I xO(e I8) + x1(e I8
) I = Eo a. e. 

But this obviously implies 

xO(eI8)=xl(ei8) a.e., 

by the strict convexity of the modulus. 

Remarks: 

(1) In the hypotheses of Theorem III we have for the 
optimal function XO, 

(A34) 

(2) Let us denote by Eo[i/2] the E defined in Theorem 
ll. The relations (A32) and (A34) show 

Eo(i/2];' IIh211L2. (A35) 

Let us remark that we have quite different behavior 
with respect to the L"" norm, namely, 

infEo[h2]/lIh2 I1 L "" = 0, (A36) 

the infimum being taken for the continuous h2 • 

To see this, let us suppose the contrary, that is, 

Eo[h2];. O.lIh2 1I L "" (A37) 

for all continuous h2 and a fixed o. Take h' essentially 
bounded, i. e., h' E L"", and put h~ = Q.Ji'. Also let C1~ 
denote the Fejer-Cesaro sequence for the Fourier ex
panSion of h'. 

Then since the Q_C1~ are continuous, we have 

(A38) 

where the first inequality follows from the well-known 
properties of the Fejer kernel. It is obvious that 

Q a'-Qh'=h'inL2 
- n - 2 • 

Therefore, (A38) implies easily that 

IIQ.h'II L ",,"" (l/o)llh'II L "", (A39) 

for all h'EL. Or this is impossible, Since, for instance, 
for h' = 2:~ (lin) sin(n8) we have Q_h' = (1/2i) 2:i" (e- In6 In), 
which does not belong to L ""I 

(3) Theorem III is a particular (though sufficient!) 
case of the results V. M. Adamjan, D. Z. Arov, and 
M. G. Krein have published in their papers (see, for 
instance, Sec. 3 in Ref. 14a and Secs. 2 and 4 in Ref. 
14b). Moreover, we recommend the paper 14b for its 
explicit formula concerning the optimal function and its 
complete and definite study of such extrapolation 
questions. 

APPENDIX B 

We shall remind the reader here of a simple theorem 
about the supremum of the module of a function 1(/;) 
holomorphic in the unit disk D, whose L 2 norm on the 
boundary r( I b I = 1) equals E/ = (e2 - e://2. As 
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IIlIFi2=t lan l2 <e~, (B1) 

° where an are the Fourier coefficients of neI8), [i. e. , 
nb) = ~ anbn], one readily finds that the value of the 
module of f(b) in the origin 

cannot exceed e /" 

(B2) 

A similar inequality can be derived for each interior 
point boED. Indeed, performing the usual transforma
tion which leaves the unit circle invariant and brings the 
point b =bo into the origin, 

b'=(b -bo)/(l -b~b), (B3) 

we get d8= 11-b~b 12/(1-lboI2)d8', so that the un
weighted problem on the I b I = 1 circle becomes a 
weighted problem in the I b ' I = 1 circle. The weight 

P= 11- bob 12/(1-lboI2) (B4) 

can be absorbed by the exterior function 

Cp=(1-bob)/(1-lboI2)1/2 (B5) 

[the function C p(b') defined by (B5) has 'no singularities 
inside D I], so that one gets for the weighted function 

(B6) 

21rr fo 2
' If(b')12p(b')d8'= 21rr fo2

1'IZ(b')Cp(b')12 d8 ' 

= 21rr i2'IZ(b'Wd8' <e~. 
(B7) 

so, one gets in analogy to (B2), 

If(b'=O)I;: If<bo)Cp(bO)I <E/. (B8) 

Hence, as Cp(bo)=(1-lboI2)112, one finally gets 

IZ(bO)I <ezl(1-lboI2)1/2. (B9) 
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The nonlinear Lee model is characterized by the Hamiltonian H = H 0 + f(H I)' where f(x) is a 
largely arbitrary (real) function and H 0 resp, H I are the free resp. interaction parts of the usual Lee 
model. The exact solutions of this field-theoretical model, in some sectors of its Hilbert space, are 
explicitly displayed; they are similar to, but somewhat richer than, the corresponding solutions of the 
usual Lee model. The V - NO and V N - N NO sectors are treated in detail. 

1. INTRODUCTION 

The Lee mode11 is one of the few nontrivial field
theoretical models that can be solved exactly, and it 
has therefore attracted considerable attention. 2 Recent
ly we noted that a quite general nonlinear extension of it 
can also be solved. 3 These results are quite interesting 
per se; moreover, they might be useful for phenomeno
logical applications; and they should appeal to those re
searchers who are currently engaged in the study of 
field theories characterized by nonpolynomial Lagrang
ians; indeed the solvable example explicitly displayed 
here might serve as a convenient testing ground for the 
(approximate) approaches that have been devised to cope 
with nonpolynomial field theories. 

The Lee model describes 3 kinds of particles, con
ventionally dubbed V, N, and B. The V and N particles 
are superheavy baryons, and have no dynamical degrees 
of freedom. The B particle is a scalar meson of mass 
j.J.. The HamiltOnian describing these (free) particles is 

Ho=ffly{) J dpV+(p)V(p) +mNo J dpW(P)N(p) 

+ J dkwt/Z+(k)a(k), (1.1) 

where we are using Schweber's self-explanatory nota
tion. 2 Here, and throughout this paper, we work in the 
Schroedinger picture. 

The characterizing feature of the Lee model is that 
the interaction between these particles is assumed to 
induce the processes V - NB, but to forbid the transi
tions N- VB. SpeCifically, in the usual Lee model, the 
interaction term is written 

H1=>..o(21T)-3/2 J dk(2wt)-1/2f1(k2) 

x J dP{V+(p)N(p -k)a(k) +N+(p -k)V(p)a+(k)}, 

where again we report Schweber's notation. 2 

The usual Lee model is characterized by the 
Hamiltonian 

(1. 2) 

(1. 3) 

The nonlinear Lee model that is studied in this paper is 
characterized by the Hamiltonian 

(1.4) 

where f(x) is a real, but otherwise arbitrary, function. 
To ascribe a definite meaning to the operator f(H1) we 
shall use the Taylor expansion 

~ 

f(x) = ~ fnx"; (1. 5) 
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the assumption that this expansion converges for all 
values of x, i. e., that the function f(x) is entire, is 
certainly sufficient, although by no means necessary, 
for the validity of all the following developments. We 
shall return to this point below. It is also convenient 
to introduce separately the even and odd parts of the 
function f(x), defined by 

~ 

fe(x) = :6 f2n X2n , 
".1 

(1.6a) 

~ 

f.(x) = :6 f2n+1 X2n+1• (1.6b) 
n=O 

Note that we have assumed, to eliminate a trivial addi
tive constant, thatf(O) vanishes. 

The function f1(k2) in Eq. (1. 2) is a (real) cutoff func
tion whose Fourier transform describes the size of the 
region over which the interaction is assumed to be 
smeared; it is conventionally normalized setting f1(0) 
= 1. The case f1(k 2) = 1, corresponding to a point-like 
interaction, causes some divergence difficulties; it is 
the case that has been studied more thoroughly in the 
usual version of the Lee model, in connection with the 
renormalization program. In this paper we retain the 
cutoff function f1(k 2

), and assume that, due to its pres
ence, all integrals are convergent. The simple and ex
plicit nature of the final results would allow an easy 
discussion of the limit when the cutoff function ceases 
to guarantee that all integrals converge; but we prefer 
to defer the discussion of this point to a separate paper.4 

The Lee model is characterized by the existence of 
two conserved quantities, the "baryon number" Q1 =ny 
+ nN and the "Lee number" Q2 = nN - ng, where ny, nN 
resp. ne indicate the number of (bare) V, N resp. B par
ticles. Obviously the quantities Q1 and Q2 commute both 
with Ho, Eq. (1. 1), and with HI> Eq. (1. 2); therefore, 
they also commute with H, Eq. (1. 4), i. e., these quan
tities are also conserved in the nonlinear Lee model. 
Thus the solution of the problem requires a treatment 
sector by sector. This we shall do in the following sec
tions' according to the following plan. 

In Sec. 2 we introduce a Simplified notation appropri
ate to all sectors with only one baryon present (Q1 = 1), 
and we establish some preliminary results appropriate 
to these sectors. 

In Sec. 3 we treat the physical V particle, and B - N 
scattering (sector Q1 = 1, Q2 = 0). In the usual Lee mod
el, the V particle may be stable, or show up as a 
resonance in B -N scattering. In the nonlinear Lee 
model discussed here, there can exist one or two physi-

Copyright © 1973 American Institute of Physics 1692 
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cal V particles, depending on the parameters of the 
model; and again they may be stable, or show up as 
resonances in (J -N scattering. It should perhaps be 
emphasized that, in the case when two stable V particles 
occur, to both of them there correspond perfectly 
legitimate eigenstates of the HamiltOnian, normalizable 
and with positive norm. These results reproduce essen
tially the previous findings by Marr and Shimamoto, 5 

who had investigated the model that obtains adding a 
four-point coupling to the Hamiltonian of the ordinary 
Lee model. Indeed, in the sector under conSideration, 
the nonlinear Lee model considered in the present paper, 
in spite of its apparent generality, reduces essentially 
only to such an extension of the usual Lee model (see 
below). 

In Sec. 4 we present the c·omplete solution, in all 
sectors with Ql == 1, of the simplified model that ob
tains if also the kinematical degrees of freedom of the 
(J boson are frozen ("one-mode" model). 

In Sec. 5, we introduce a Simplified notation appro
priate to all sectors with two baryons present (Ql == 2) 
and localized at two points r l and r 2 • 

In Sec. 6, we treat the case of one V and one N parti
cles localized at a distance r from one another, and 
the scattering of a boson on two N particles localized at 
r l and r 2 , respectively (sector Ql==2, Q2==1). This 
scattering problem does not appear to have been treated 
previously, even for the usual Lee model. It is quite 
interesting, as an example of a nonspherically sym
metrical (elastic) scattering process, whose scattering 
amplitude can be explicitly displayed. 

Finally in Sec. 7 we collect some concluding remarks, 
and we mention a number of open problems for further 
study. 

Certain mathematical developments have been con
fined to 3 Appendixes. 

2. SECTORS WITH ONE BARYON PRESENT 
(0 1= 1). NOTATION AND PRELIMINARIES 

For sectors of the Hilbert space with only one baryon 
present (Ql == 1), a Simplified notation6 can be used. This 
obtains representing the two (bare) baryon states (N or 
V) by a Pauli spinor, and noting that only S-wave mesons 
are coupled. All reference to the momentum variable 
can therefore be dropped, and the creation and annihila
tion operators of S-wave (J mesons can be introduced 
setting a(w) == (41Tkw)1/2a(k) so that, 

[a(w),a(w')]==I5(w-w'). (2.1) 

The free part of the Hamiltonian, Eq. (1.1), can then 
be written in the form 

Ho==mNo +E(l +003 ) + J dwwa+(w)a(w), 

where 003 is the third Pauli matrix and 

(2.2) 

(2.3) 

Here, and always in the follOwing, the integration over 
w extends from Jl, the (J meson mass, to infinity. The 
interaction part of the Hamiltonian, Eq. (1. 2), can ac
cordingly be written 

(2.4) 
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where 00_ and 00+ are the lowering and raising Pauli 
operators [00.,1 ±) == 0, 00.1 'f) == I ±)], and of course the 
states I +) resp. I - > represent the bare V resp. N 
states (and the vacuum as far as the boson field is con
cerned). The quantities a and a+ are defined by 

a = J dWA(W)a(W) , a+ == J dWA(w)a+(w), (2.5) 

with 

A(W) == [Ao/(21T) ]k1
/
2f l W), w == (k2 + Jl2)1/2. (2.6) 

Note that, conSistently with this definition and the nor
malization condition fl(O) == 1, A( Jl) vanishes. 

We now introduce the two important quantities 

(2.7) 

and 

(2.8) 

As mentioned in the Introduction, throughout this paper 
we shall assume that the function A(W) vanishes suffi
ciently fast at infinity so that the integral of Eq. (2.7) 
[and a fortiori the integral of Eq. (2. 8)] converge. A 
sufficient condition for that is that 

(2.9) 

In the point-like case, 

A(W)==[Ao/(21T)W/ 2
, (2.10) 

neither one of the two integrals of Eqs. (2.7), (2.8) 
converges; this case is considered in a separate 
paper. 4 The function A(W) is moreover assumed to be 
such that, aside from the question of asymptotic con
vergence just mentioned, the integrals of Eqs. (2.7) 
and (2.8) be well defined and finite. 

The function F(w) vanishes as w diverges to - 00, and 
it is a monotonically increasing function of w in the in
terval _00, Jl: 

F(-00)==0, 

dF(w)/dw > 0 for w.,; Jl. 

(2.11a) 

(2.l1b) 

These two important properties follow immediately from 
its definition, Eq. (2.8). 

The problem that we are to investigate is character
ized by the Hamiltonian of Eqs. (1.4), (2.2), and (2.3). 
We end this section reporting the important identity 

00 m 
f(Hr) == L; (_)m A-2m L; (-)8[s!(m - s) ! ]-1 

moO 8=0 

x{(a+)mam[~fe(A(s + 1)1/2) + P..fe(Asl /2)] 

+ [aJa+)m+1am +a+(a+)mam+1lJo(A(s + 1)1 /2)/ 

(A(s + 1)1 /2)}, (2.12) 

where p. resp. P_ are the projection operators over the 
states I + ) resp. I - >, 

P.==(l ±a3 )/2. (2.13) 

This formula is proved in Appendix A. It implies that, 
for the whole sector of Hilbert space with Q1 == 1, the 
only values of the function f(x) that play any role in the 
dynamics of the nonlinear Lee model are the values 
f(Anl

/
2
), n == 0,1,2 •• '. In particular, if the function 

f(x), although not identically vanishing, has the property 
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f(An ' / 2)=0, n=0,1,2,.·., (2.14) 

then clearly for all sectors of Hilbert space with Q1 = 1 
the Hamiltonian H reduces effectively to the free part 
Ho' An example of a class of functions f(x) that possess 
the property (2. 14) is 

f(x) =:l(x) sin[1T(x/ A)I/2], (2.15) 

with l(x) entire. 

More generally, if 

fe(Anl/2) = fe, n = 0,1,2, ... , 

fo(An ' / 2)=fo, n=1,2,3, ••• , 

(2.16a) 

(2. 16b) 

with fe and fo independent on n, then Eq. (2.12), together 
with Eq. (A. 10), yields 

(2. 17) 

so that for this class of functions the nonlinear Lee 
model reduces essentially to the usual Lee model (in 
the sectors of Hilbert space with one baryon present). 

3. THE PHYSICAL V PARTICLE, AND ON 
SCATTERING (SECTOR 0,= 1,02 =0) 

In this sector, all states can be represented as a 
superposition of the bare V state 1 +), and of the states 
a+(w) 1-) representing a boson of energy wand a N 
particle. Therefore, in this sector the Hamiltonian (1.4) 
reduces simply t07 

H =Ho + f.(A)F+ + (Jo(A)/ A](O'_ot +O'+a) 

- [fe(A)/ A2 ]P_a+a, (3.1) 

since all the other operators appearing in the rhs of Eq. 
(2.12) give a vanishing result when applied to these 
states. 

The field theoretical model characterized by the 
Hamiltonian (3.1) coincides essentially with the "Lee 
model with a four-point coupling" introduced several 
years ago by Marr and Shimamoto. 5 Thus the results 
reported in the rest of this section reproduce to a large 
extent the findings of these authors. 

We look first of all for normalizable eigenstates of 
the Hamiltonian H, Eq. (3.1); such states represent 
physical (stable) V particles. As we shall presently 
see, depending on the parameters of the model, there 
can be two, one, or zero such states. 

Let us consider the stationary Schrodinger equation 

HI V)=myl V), (3.2) 

the state 1 V) being represented by 

I V) = vYy( 1+) + J dwu(w, w)a+(w) 1-». (3.3) 

The normalization constant vYy is clearly expressed, in 
terms of the function u(w, w), by the formula 

vYv =: [1 + J dw I u(w, w) 12]-1/2. 

The quantity w is introduced for convenience; it is 
related to the eigenvalue my by 

(3.4) 

(3.5) 

where we have written mN in place of mN since ob
viously the bare and physical masses of t~e N baryon 
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coincide,7 as do the corresponding states. It is also 
convenient to introduce the four constants7 

c=fo(A)/A, 

b=f.(A)/A2
, 

wo=mv: -mN +fe(A)=2E +fe(A), 
o 

n = Wo - (c2 /b). 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

In the usual Lee model, c=:l, b=O, wo=my -mN 
=2E, n diverges and bn = -1. 0 

Using Eq. (3.1), we immediately get from Eq. (3.2) 
the relations 

wo-w +c J dw~(w)u(w,w)=O, (3.10) 

(w - w)u(w, w) +c,\(w) + b~(w) J dw',\(w')u(w, w') = O. 

(3.11) 

From these equations we obtain 

u(w, w) =: ~(w)[b(w - n)]/[c(w - w)], 

and the eigenvalue condition 

- (w - wo)/[b(w - n)] = F(w), 

with F(w) defined by Eq. (2.8). 

(3.12) 

(3.13) 

Clearly any solution w of Eq. (3.13) yields a nor
malizable eigenstate, provided the stability condition 

w</J. (3. 14a) 

or, equivalently, 

(3. 14b) 

holds. If on the other hand a solution of Eq. (3.13) oc
curs for w > /J., it does not yield a normalizable eigen
state, because the integral over w in Eq. (3.3) becomes 
singular, as it is apparent from the explicit form of 
u(w, w), Eq. (3.12). Such solutions represent unstable 
V states, and show up as resonances in eN scattering 
(see below). 

In Figs. 1 and 2 we have provided a graphical repre
sentation of Eq. (3.13) in the two cases b >0 and b <0. 

I 
I 
I 
I 
I 
I 
I 

_IC2/bl~ 

Q iij ill 
!1/b! I 0 
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I 
I 
I 
I 
I 

FIG. 1. Graphical display of Eq. (3.13) for positive b. 
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I 
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I 
I 
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I i1/bi I I 
I I I 

FIG. 2. Graphical display of Eq. (3.13) for negative b. 

The graph of F(w) has been drawn taking account of the 
properties of Eqs. (2.11). It is clear from Fig. 1 that, 
if b is positive, there can be at most one solution of 
Eq. (3.13) for w < /J.; and indeed there will be one solu
tion, if the condition Wo < /J., or, equivalently, 

(3.15) 

holds. Clearly a less stringent necessary condition for 
the existence of one solution of Eq. (3.13) with w < /J. is 
provided, in this case b > 0, by the inequality 

o </J., (3. 16a) 

or, equivalently, 

myo <mN + /J. - fe(A) +c2/b, (3. 16b) 

and, if this inequality holds, a necessary and sufficient 
condition for the existence of one solution of Eq. (3.13) 
in the range w < /J. is 

(3.17a) 

or, equivalently, 

myo <mN + /J. - fe(A) + (c2/b) {I + [bF(/J.)]-l}-l. (3. 17b) 

On the other hand, as is apparent from Fig. 2, if b is 
negative, there can be two, one, or zero solutions of 
Eq. (3.13), in the stability region W </J.. Clearly the 
condition (3.16) is in this case sufficient to guarantee 
the existence of at least one solution, and necessary for 
the existence of two solutions. Another independent 
condition, that, in this case b <0, is also both sufficient 
to guarantee the existence of at least one stable V par
ticle, and necessary for the existence of two stable V 
particles, is the inequality 

(3.18) 

And if both inequalities, (3.17) and (3.18), hold, then 
validity of the inequality (3.17) is, in this case b <0, 
necessary and sufficient for the existence of two stable 
V particles. 

If b vanishes (as is the case in the usual Lee model), 
Eq. (3.13) becomes 

(3.19) 
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and it clearly admits at most one solution in the stabil
ity region w < /J.. A necessary and sufficient condition 
for the occurrence of this solution is provided by the 
inequality 

Wo < /J. + F(/J.)/ c2 (3. 20a) 

or, equivalently, 

myo <mN +/J. +F(/J.)/c2
• (3.20b) 

The most remarkable difference between the nonlinear 
Lee model and the usual Lee model is the possibility 
that two stable V particles appear in the former case. It 
should be emphasized that these two states are sound 
physical states, and in particular their norm is positive. 

Let us turn now to a discussion of (S-wave) scatter
ing. We consider again the stationary Schrooinger 
equation, 

(3.21) 

with the (incoming and outcoming) states represented by 

1 W, ~~t) = a+(w) 1-) + f dw 'uln (w, w')a+(w') 1-) + 1)1. (w) 1 + ). 
out out 

(3.22) 

Now the function U(w, w') is singular at w' = w (see 
below), and the prescription to treat the singularity is 
the distinguishing feature of the ingoing and outgoing 
states. 

Inserting the ansatz (3.22) into the Schrodinger equa
tion (3.21) and proceeding as above, one easily obtains 
the following explicit expressions for U~~t(w, w') and 
1/A~t(w): 

1/1. (w) = c;\.(w){(w - wo)[1 + bFln (w)] +c2 
Fin (w»-\ 

out out out 

(3.23) 

Uln (w, w') = (w - w' ±iE)-l(b/c)(w -O);\.(w'ml. (w), 
out out 

with 

Fin (w) = f dW'A2(W')/(w ' - w 'fiE) 
out 

(3.24) 

(3.25a) 

(3.25b) 

In Eq. (3.25b), F(w) is of course the quantity defined 
by Eq. (2.8). 

From these expressions, and the standard definition 
of the (reduced) S matrix (for S-wave scattering), 

(w', out 1 w, in) = o(w - w') So (w) = o(w - Wi) exp[2ioo(w)], 

(3.26) 

one easily obtains the expression 

So(w) =J(w - iE)/J(W +iE), 

with the "Jost function" J(z) defined by 

J(z) = (z - wo>![b(z - 0)] + f dWA2(W)/(w - z). 

(3.27) 

(3.28) 

Equation (3.27) is of course written for real w. The 
analytic continuation of So(w) to complex w can be per
formed in the usual way, i.e., evaluating the Jost func
tion J(w) appearing in the denominator of Eq. (3.27) on 
the "physical sheet" of its Riemann surface, and the 
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Jost function of the numerator on the "unphysical sheet" 
(connected to the physical sheet through the cut from 
w = IJ. to w = 00). Using this analytic continuation, it is 
easy to ascertain that the analytically continued S 
matrix has no poles on the physical sheet, except for 
those occurring for real w < IJ., that correspond to 
stable physical states and that have already been dis
cussed. In fact setting w = x + iy and looking for zeros 
of the denominator of the S matrix. 

J(x+iy+iE)=O, (3.29) 

we get from Eq. (3.28) the two (real) equations 

(x - wo)(x -0) +y2 = - b[{x - 0)2 + y2] 

X J dwX2(w)(w-x)![(w-x)2+(y+e)2], (3.30a) 

c2y = _ b2(y +e)[{x - 0)2 + y2] 

X J dwX2{w)/[(w - X)2 +(y +e)2]. (3.30b) 

Here we have retained the variable e, although of course 
the limit E - 0 is always implicit. Clearly Eq. (3. 30b) 
implies that y vanishes, i. e., the only poles of So(w) on 
the physical sheet can occur for real w; and Eq. (3.30a) 
implies that they can occur only in the stability region 
w < J.L and that they are indeed determined by the same 
eigenvalue equation that yields the mass of the phySical 
V particle, Eq. (3.l3). Note that the requirement that 
So{w) have the analyticity properties associated with a 
correct causal behavior implies no additional restric
tions on the parameters of the nonlinear Lee model. It 
is also evident that to every solution of the eigenvalue 
Eq. (3.13) occurring in the instability region w > J.L 
there corresponds a resonance in (S-wave) () -N scat
tering. This is most vividly displayed by the formula 
for the total cross section for elastic () - N scattering, 
that follows immediately from Eq. (3.27), and reads 

o-(w) = 4'IT(w2 - 1J.2)-I[ 'lTX2{w»)2{[{w - wo)/b(w - 0) + F(W)]2 

+ ['lTX2{W»)2}-1 (3.3la) 

= 41T[X~f:W)/{41T)]2{[(W - wo)/b{w - 0) + F(W)]2 

+[kX~fI2W)/(41T)]2}-I. (3.3lb) 

Note that the total cross section vanishes for w = 0; 
this value is of course physically accessible only if 
O>IJ.. 

In the previous discussion we have implicitly as
sumed that the quantity c does not vanish. If it does 
vanish, then 0 coincides with wo, and in place of the 
eigenvalue equation (3.l3) we have the equation 

-lib = F(c:;;), (3.32) 

that clearly admits no solution in the range w < J.L if b 
is positive, and one solution if b is negative and larger 
in modulus than 1/F(J.L). The corresponding eigenstate 
is 

I V) = [ J dwX2(w)/{w - W)2]-1/2 J dwX{w)(w - w)-la+(w) 1-)· 
(3.33) 

In addition, the bare V state 1 +) is a (normalized) 
eigenstate of H, with eigenvalue my=mN +wo (even if 
Wo > IJ.). In fact, as it is easily seen from Eq. (3.1), 
if c = 0, i. e., if fo{A) = 0, the interaction part of the 
Hamiltonian cannot induce transitions between the (bare) 
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N and V states (in the sector of Hilbert space under 
present consideration). As for the scattering problem, 
the formulas given above continue to be valid even if 
c = 0, with the obvious Simplification implied by the 
equality of Wo- with 0, 

4. "ONE-MODE" LEE MODEL (SECTORS Q 1 = 1) 

In this section we consider a Simplified model, that 
obtains from the nonlinear Lee model considered in the 
previous sections if also the kinematical degrees of 
freedom of the () boson are frozen. The corresponding 
case had been previously discussed, for the ordinary 
Lee model, by Barton. 8 

The model is characterized by the HamiltOnian 

(4.l) 

(4.2) 

and 

(4.3) 

where now wand X are two constants and the creation 
and annihilation operators a+, a, obey the commutation 
relations 

[a,a+]=1. (4.4) 

The other symbols are defined as above. 

The (complete) spectrum of this Hamiltonian is of 
course discrete, and it can be given expliCitly together 
with the corresponding eigenstates. The formulas are 

Bin, ±)= W",.ln, ±), (4.5) 

Wn,.= (n - ~)w + fe{Xn1/ 2) ± [(E _~W)2 + f:(M 1/ 2) ]1/2, 

(4.6) 

In, ±) =.A'n • .{n1/2fo{xn 1/2){a+)n-ll +) + [Wn •• - E 

- fe{Xn1/2) - {n -1)w ](a+)n I-)}; (4.7) 

.A;". ={2 . n! [(E _~W)2 + f:{Xn1/ 2) ]1/2([{E _~W)2 

(4.8) 

Here n = 1,2, 3 ••• ; clearly this quantum number is di
rectly related to the Lee number Q2 by 

(4.9) 

In addition, the state 1-) is also an eigenstate of H, 
with eigenvalue _E.7 These results can be easily 
verified by direct substitution; they have actually been 
obtained using a technique9 that guarantees that these 
states constitute the complete set of eigenstates of the 
Hamiltonian (4. 1). 

The explicit spectrum (4. 6) displays the conditions 
that the function f(x) must satisfy in order that the 
Hamiltonian B of Eqs. (4.1-3) possess a ground 
state; this condition coincides with the requirement that 
the spectrum (4. 6) possess a finite minimum. Clearly 
if the function f{x) is finite for finite real x, as we al
ways assume, a necessary and sufficient condition for 
this to happen is that there exist a finite constant M 
such that 

lim (Je{x)±fo{x) ] > - M. (4.l0) 
X·dO 
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5. SECTORS WITH TWO BARYONS PRESENT 
(01 =2). NOTATION AND PRELIMINARIES 

In this section we introduce a simplified notation that 
is appropriate to the treatment of sectors of Hilbert 
space with two baryons present (Ql = 2). It is construct
ed in clear analogy to the notation introduced in Sec. 2 
for sectors with one baryon present. It is also clear 
how this notation should be extended in order to treat 
sectors with more than two baryons present; a problem, 
however, that is not considered in this paper. 

The free part of the Hamiltonian is written as 

2 

Ho=2mN + L; E[0'3U) +1] + J elkwta+(k)a(k), (5.1) 
i=1 

where 

[a(k) , a+(k')] = O(k -k'), 

wt=(k2 + iJ.2)1/2. 

(5.2) 

(5.3) 

The integrals over elk, here and always in the following, 
extend over the whole space. The Pauli matrices 0'3(j) 
act on a two-spinor space according to the following 
notation: 

0'3(1) I a, f1J = a I a, f1J, 

0'3(2) I a, f1J = 131 a, f1J, 

where a and 13 stand for + or -. 

The operator HI is written as 
2 

H I = L; J dky(k)[a(k)exp(ik. rJ)O'+(j) +a+(k) 
i=1 

xexp(-ik. r)O'Jj)]; 

(5.4a) 

(5.4b) 

(5.5) 

we areallearly assuming that the two baryons are local
ized at the pOSitions r 1 and r 2, so that, for instance, 
the state 1+, -) represents a (bare)V particle localized 
at r 1 and a N particle localized at r 2 • The (real) form 
factor y(k) is related to the form factor of Eq. (1.2) by 

y(k) = ~(2'JT)-3/ 2(2wt)-1/2f1W) (5.6a) 

and to the form factor of Eq. (2.6) by 

y(k) = (2'JT)-1/ 2(2kwt)-1/ 2X(W). (5.6b) 

The raising and lowering operators O'+U), O'_{j) are 
defined by 

0' .. (1) I a, f1J = 0, 0' .. (1) 1- a, f1J = I a, ~, (5.7a) 

0'8(2)1 a, ~=O, 0'8(2) la, - ~ = I a,~, (5.7b) 

where again a stands for + and -, and so does f3. 

We now introduce the important quantities 

and 

A!(r) = J elky2(k)[1 ±exp(ik. r)] 

=4'JT 10'" dkk2y(k)[1±sin(kr)/(kr)] 

= 1.. .. dwX2(w)[l ±sin(kr)/(kr)] 

(5.8a) 

(5.8b) 

(5.8c) 

F~(w;r)=P J elk' y(k')[l±exp(z'k'·r)l!(wt.-w)(5.9a) 

= 4'JTP 10'" dk'k,2y2(k')[1 ± sin(k'r)/(k'r)l!(wt • - w) 

(5.9b) 
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=p J'" dW'A2(W')[1 ±sin(k'r)/(k'r)l!(w' -w). 
u. 

(5.9c) 

As already mentioned, we assume that these integrals 
are convergent. A comparison with the notation of Sec. 
2 implies 

A!(oo) =UA!(r) + A~(r)] = A2
, 

F~(w;oo)=UF.(w;r) +FJw;r)]=F(w), 

A!(0)=2A2, 

F.(w;O) = 2F(w), 

A_(O) =0, 

F_(O) =0 , 

with A and F(w) defined by Eqs. (2.7) and (2.8). 

(5. lOa) 

(5. lOb) 

(5.10c) 

(5.10d) 

(5.10e) 

(5.10f) 

Note that the functions F~(w;r) have the same prop
perties as the function F(w): 

F.(-oo;r) =0, 

dF.(w;r)/dw>O, for w.;; iJ.. 

(5. 11 a) 

(5.11b) 

The first property is directly implied by the definition 
(5.9) and the assumed finite existence of A.(r), Eq. 
(5.8); the second property obtains differentiating Eq. 
(5.9) and noting that the modulus of (sinx)/x never ex
ceeds unity. 

6. NV STATES, AND 8NN SCATTERING 
(SECTOR 0 1 = 2, O2 = 1) 

In this section, the physical states are superpositions 
of the bare VN states I +, -) and I -, +) and of the states 
a+(k) 1-, -) representing a boson of momentum k and 
two N particles. Of course the two baryons are local
ized at the fixed positions r 1 and r 2. 

We look first of all for normalizable eigenstates of 
the Hamiltonian H of Eqs. (1. 4), (5.1), and (5.5). We 
indicate such states as IW(r);rH r 2), where W(r) in
dicates the corresponding eigenvalue of H: 

(6.1) 

It is convenient to introduce a quantity w(r) through 

W(r)=2mN +w(r). (6.2) 

As we shall presently see, the quantity w(r) must 
satisfy the stability condition w(r) < iJ. in order that the 
state I W(r);ru r 2) be normalizable. The physical mean
ing of this condition is obvious. 

In these equations, and always below, 

r=r1-r2 

is the (fixed) distance between the baryons. 

For the state I W(r);r lJ r 2) we have the ansatz 

I W(r);rH r 2 ) =./t'"(r){'1h(r) 1+, -) +112(r) 1-, +) 
+ J elku[w(r),k;r]a+(k)I-, -)}. 

(6.3) 

(6.4) 

The normalization constant.A"(r) is clearly given by 

.A"(r)={1111(rW + I 112(r) 12 + J elklu[w(r),k;r]12}-1/2. 

(6.5) 
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From the definitions of Ho and I W(r);rlJ r 2) we get 

[Ho - W(r)] I W(r);rl> r 2 ) =.N(r){[2E - w(r)]['I'/l(r) 1+, -) 

+'I'/2(r) 1-, +)] + J dk[wt - w(r)] 

xu[w(r), k;r la+(k) 1-, - )}. (6.6) 

There remains to evaluate the effect of the application 
of the operator f(HI ), with HI defined by Eq. (5.5), to 
I W(r)irUr2)' This is an easy task, once the following 
formulas (whose detailed proof is given in Appendix C) 
are established: 

fe(HI ) I a, - a) =H(fefA.{r)] + fJA-<r)]) I a, - a) 

+ (fe[A+(r)] - fe[A-<r)]) I - a, a)}, (6.7) 

fo(HI ) I a, - a) =t J dky(k){exp(-z'k· r1)k(r) +ac.<r)] 

+exp(-z'k. r 2)[dr) - adr)]}a+(k) 1-, -), 
(6.8) 

fe(HI) J dku(k)a+(k) 1-, -) 
=t J dky(k){[exp(-z'k o rl)x(rl) 

with 

+ exp(- ik· r 2)x(r2)][b+(r) + b-<r)] 

+ [exp(- ik· r 1)x(r2) +exp(- ik· r 2)x(r1)] 

x [b.(r) -b-<r)]}a+(k) I -, -), 

x(r) = J dky(k) exp(ik· r)u(k), 

fo(H I) J dku(k)a+(k) I - , -: ) 

(6.9) 

(6.10) 

=H{x(rl)[dr) +dr)] +x(r2)[c.(r) -dr)]}1 +, -) 

+{x(r1)[c.<r) - dr)] + x(r 2 )[c.<r) + dr)]}1 -, + ». 
(6.11) 

The quantities b.(r) and c. that appear in these equations 
are defined, in close analogy to the constants introduced 
in Sec. 4, by 

b.(r) = fe[A.(r) l! A!(r) , (6.12) 

c.(r)=fo[A.(r)l!A.(r). (6.13) 

It is also convenient to introduce the quantities 

wo.(r) = 2E + fe[A.(r)], (6.14) 

O.(r) = wo.(r) - [c~(r)/b.(r)]. (6.15) 

In writing all these equations we are assuming thatf(O) 
vanishes. Here of course A.(r) is defined by Eqs. (5.8). 
Note that these definitions, together with Eqs. (5.10), 
imply 

b.(oo)=b, (6. 16a) 

c.(oo)=c, (6. 16b) 

wo.( (0) = wo, (6. 16c) 

0.(00)=0, (6. 16d) 

the quantities appearing in the rhs of these equations 
being those introduced in Sec. 3, Eqs. (3.6-3.9). 

Mter this preparation, it is easy to write explicitly 
the conditions that the Schrodinger equation (6.1) im
plies for the quantities l1"r) and u[w(r), k;r]. We find 
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(6. 17a) 

(6.17b) 

(w - w)u(k) +ty(k){[ (c. + cJ'I'/1 + (c+ - CJTl2 + (b+ + bJX1 

+ (b+ - bJX2] exp( - ik· r l) + [<c+ - cJ'I'/l + <c+ + C.)1)2 

+(b+ - bJX1 +(b+ +bJx21 exp(- ik· r 2)}=0. (6.18) 

Here we have omitted to indicate explicitly the depen
dence of all quantities on r, and we have introduced 
some additional self-explanatory notational simplifica
tions [such as writing Xi for x(r j), w for wit, etc.]. 

From Eq. (6.18) we can immediately obtain an ex
plicit expression for u(k) in terms of'l'/u '1'/2' Xu X2 , 

and it is clear that the condition 

w<j.L (6.19) 

must be satisfied in order that u(k) contain no singular
ity in the integration range. If this condition is satisfied, 
we can multiply Eq. (6.18) by y(k)exp(z'krj)/(w -w), 
with j = 1, 2, and then integrate over dk. 

In this manner [and using the definitions (6.10) and 
(5.9)] we get a (homogeneous) system of four linear 
equations for the determination of the four quantities 
'l'/u '1'/2' Xu X2' namely, 

dU'l'/l +d12'1'/2 +d13X1 +d14X2=0, 

d21'1'/1 +d22'1'/2 +d23X1 +d24X2 =0, 

d31'1'/1 +d32'1'/2 +dSSX1 +dS4X2 = 0, 

d41'1'/1 +d42'1'/2 +d4sX1 +d44X2 = 0, 

with the coefficients dlJ defined by 

du =d22 =t(WO+ +woJ -w, 
d 12 =d21 =t<te+ - leJ , 

d13 =d24 =t<c+ +c.), 

d14 =d23 =t<c+ -cJ, 
dSl =d42 =t<C+F + + c.FJ, 

d32 =d4l =t<C+F+ - c.FJ, 

d33 =d44 = 1 +tcb+F. +bYJ, 

d34 =d4S =j(b+F+ - b.FJ, 

(6.20a) 

(6.20b) 

(6.20c) 

(6.20d) 

(6.21a) 

(6.21b) 

(6.21c) 

(6.21d) 

(6.21e) 

(6.2lf) 

(6.21g) 

(6.21h) 

where, again for Simplicity, we have written F. in 
place of F.[w(r);r). 

It is now convenient to introduce the variables 

x.= Xl ± )(2' 

so that 

'1'/1 =tc'l'/+ +'1'/.), '1'/2 =~('I'/+ -'1'/.), 

Xl =t(x+ +xJ, )(2 =t(x+ - XJ· 

(6.22a) 

(6.22b) 

(6.23a) 

(6.23b) 

In fact, adding and subtracting the first two and the last 
two equations of the system (6.20), we get two decoupled 
systems of two (homogeneous) equations in two 
variables: 



                                                                                                                                    

1699 F. Calogero: Nonlinear Lee model. II 

(wo. - w) 77. + c.X.= 0, 

c.,F.77. +(1 +b.F.=O, 

(6. 24a) 

(6. 24b) 

where one must take either the plus sign or the minus 
sign wherever the double sign appears. 

Of course to have a nonvanishing solution for 77l> 772' 
Xl> X2 either the determinant D. or the determinant D_ 
must vanish, with the definitions 

D.=(wo.-w)(l +b.F.)-c!F. 

= wo. - w +b.(Q. - w)F •. 

(6. 25a) 

(6.25b) 

Of course if D. vanishes (and D_ does not), 77_ and x
vanish, and vice versa. 

Two separate equations for the determination of w 
have therefore been obtained, either one of which must 
be satisfied. They read 

(wo.-w)(l +b.,F.)=c!F., (6.26a) 

or, equivalently, 

- [wo.(r) - w(r)]/{b.(r)[Q.(r) - w(r)]} = F .[w(r);r]. 

(6. 26b) 

In this last equation the explicit dependence of all quan
tities upon r has been reinserted; let us recall that 
wo.(r), Q.(r), and b.(r) are defined by Eqs. (6.14), 
(6.15), and (6.12), and F.(w, r) by Eqs. (5.9). 

The two equations (6. 26b) are remarkably similar to 
the Eq. (3.13) that determines the energy of a single 
physical V particle. Indeed, since the w dependence of 
the functions F.(w;r) (for fixed r) is, as noted in Sec. 5, 
analogous to that of the function F(w) of Secs. 2 and 3, 
the discussion of the two equations (6. 26b) can be made 
in complete analogy to that of Eq. (3.13); and in particu
lar, the graphical display of Figs. 1 and 2 remains 
relevant (with obvious modifications), as well as the 
conclusions about the number of solutions [that depends 
primarily on the sign of b.(r) and b_(r), and also on the 
values of the other parameters, as discussed in Sec. 3]. 

Let us reemphasize that only solutions occurring in 
the range w < IJ. yield normalizable solutions of the 
stationary Schrodinger equation (6.1). On the basis of 
the analysis outlined above, there can be at most four 
such solutions. The corresponding wave functions (6.14) 
can be easily computed solving the system (6.24) and 
then using Eqs. (6.23) to evaluate 77l> 772' Xl> X2' and 
Eq. (6.18) to evaluated u[w(r) , k;r]. In this manner one 
finds that the (normalized) eigenfunction(s) correspond
ing to the root( s) w of Eq. (6. 26b) with the + sign have 
the explicit form 

1 NV;r; +) = (2 [c.(r) ]2 +4{b.(r)[Q.(r) - w(r) J}2 J dky2(k) 

xcos2(~k. r)/[wt - w(r) ]r1
/
2 

X(c.(r)[1 +, -) + 1-, +)] +2{b.{r)[Q.(r) 

-w(r)]} J dky(k)exp[-(i/2)k·(r1 +r2)] 

xcos(~k. r)[wt - w(r)]-V(k) 1-, -», 
(6.27a) 

whereas the (normalized) eigenfunction(s) corresponding 
to the root(s) w of Eq. (6. 26b) with the - sign have the 
form 
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!NV;r;-) = (2[dr)]2 +4{bJr)[Q_(r) - w(r)]? J dky2(k) 

Xsin2(~k. r)/[wt - w(r) ])-1/2 

x(dr)[1 +, -) -1-, +)] -2i{b_(r)[QJr) 

- w(r)]} J dky(k) exp[ - (i/2)k(r1 + r 2)] 

xsin(~k· r)[wt - 'W(r) ]-la·(k) 1-, -». 
(6. 27b) 

Note that the states (6. 27a) are symmetrical under the 
exchange of the coordinates r 1 and r 2 characterizing the 
location of the two baryons, while the states (6.27b) are 
antisymmetrical. ThUS, only the former resp. latter 
should be retained if the baryons where assumed to 
satisfy Bose resp. Fermi statistics; but since the mass 
of the baryons is being treated as infinite, so that they 
can be localized as classical point particles, there is no 
reason to restrict attention to Fermi, or Bose, statis
tics, in place of the more general case, corresponding 
to distinguishable (classical) particles (Boltzmann 
statistiCS), and including both symmetrical and antisym
metrical states. 

The physical interpretation of these solutions is 
rather transparent. To discuss this, it is convenient to 
consider how the situation depends on the distance r 
between the two baryons. 

If this distance is very large, so that IJ.r» 1, the 
asymptotic formulas (6.16) and (5.10) apply, and there
fore Eqs. (6.26), that yield the energies of the physical 
states NV through Eq. (6.2), coincide with Eq. (3.13), 
that yields the energy of the (isolated) physical V parti
cles through Eq. (3.5). Therefore, we have 

(6.28) 

an equation having an obvious physical meaning: When 
the two baryons are very far apart, they do not interact, 
and the energy of the state is just the sum of the ener
gies (masses) of the (isolated) N and the (isolated) V 
particles. Of course there are two such states, corre
sponding to the "plus" and "minus" versions of Eq. 
(6.26b), both of which go into Eq. (3.13) in the large r 
limit; the corresponding eigenstates are explicitly dis
played by Eqs. (6.27), with Eqs. (6.16). Because in the 
limit of large r these two states have the same energy 
(6.28), any linear combination of them is also an eigen
state of the Hamiltonian; and, in particular, it is easily 
seen that the two combinations 

!NV;oo) = 2-1
/

2{!NV;oo; +) + INV;oo;-)}, 

1 NV;oo) = 2-1
/

2{!NV;oo; +) -INV;oo;-)}, 

(6.29a) 

(6.29b) 

represent, respectively, an (isolated) N particle local
ized at r 2 and an (isolated) physical V particle localized 
at rl> and an (isolated) N particle localized at r 1 and an 
(isolated) V particle localized at r z• Of course of these 
(stable) states there can exist four, two or zero, de
pending whether two, one or zero isolated phySical V 
particles exist (as discussed in Sec. 3). 

If the physical N and V particles are at a distance 
apart that is not large relative to the range 1/ IJ., then 
they interact (through the emission and absorption of 
virtual e bosons). This interaction gives rise to a 
potential energy V(r) depending upon the distance r be-
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tween the two physical particles, whose magnitude is 
easily computed from Eqs. (6.26) and (6.2): 

V(r) = 'W(r) - (;;(00). (6.30) 

Of course, there is generally a different potential in the 
even and odd states (even and odd, that is, under the 
exchange of the coordinates of the two baryons); the 
potential depends moreover on which one of the two V 
particles is present (if the parameters of the model are 
such that two physical particles exist). It may also 
happen that the number of physical V particles, or rath
er the number of stable NV states, varies with r; an 
effect that can be ascribed to the NV potential, that can 
produce a bound state when it is attractive, or it can 
dissolve an existing bound state when it is repulsive. 
All these properties are determined by the eigenvalue 
equations (6.26), that can be analyzed, and graphically 
displayed, in close analogy to the treatment of Sec. 4. 
Note that a separate behavior characterizes the even 
and odd states. Of course the detailed properties de
pend on the structure of the functions F,o(w;r) [that de
pend on the form factor y(k)] and of the quantities b,o(r), 
wo,o(r), and n£(r) [that depend on the function j(x) char
acterizing the nonlinearity of the model, and also on the 
form factor y(k)]. 

A detailed discussion of the shape of the potential 
V(r) acting in the various cases would require a more 
explicit determination of the function j(x) than we have 
given thus far. Generally one would find that at large r 
the potential V(r) vanishes as exp(-Ilr), where Il is the 
mass of the 9 boson; while its Short-range behavior in 
the various states could be easily inferred from Eqs. 
(5.10c-f). For some discussion of this point (in the case 
of the usual Lee model) the interested reader is re
ferred to the book by Baz et ai., Ref. 2, and to Ref. 10. 

Let us proceed to the study of the scattering of a 9 
boson on two N particles localized at r 1 and r 2. This 
problem is easily dealt with on the baSis of the previous 
results. The stationary Schrodinger equation now reads 

(6.31) 

where of cours~ the energy Wt of the scattering 9 boson 
is larger than Il; and for the scattering eigenfunctions 
we have the representation 

Ik;~~t) ='111,11. 1+, -) +172,1" 1-, +) +a+(k) 1-, -) 
out out 

+ J dk'u1" (k, k')a+(k') 1-, -). (6.32) 
out 

The functions u(k,k') are now singular at Wt.=Wt, and 
the treatment of the singularity characterizes the in
coming and the outgoing states. Hereafter, we conSider, 
for notational simplicity, only the incoming case (and 
we omit indicating explicitly the subscript "in"), and 
only at the end do we give the results for both cases. 
Also note that we have omitted indicating explicitly the 
dependence upon r 1 and r z • 

The determination of 1]1> 1]2' and ii(k,k') can be easily 
effected noting that they must still satisfy the Eqs. 
(6.17) and (6.18), with iii replaced by Wt, W replaced by 
wt', k replaced by k' , 

u(k) = O(k -k') +u(k,k'), (6.33) 
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(6.34) 

(6.35) 

u(k,k') = (Wt - Wt' +ie)-lh(k'){y(k)[(b+ +bJ 

xexp[i(k-k')rJ +(b+- bJexp[i(kr2 -k'r1 )] 

+ (b. -bJexp[i(kr1-k'r2)] +(b+ +bJ 

Xexp[i(k -k')r2D+exp(-z'k'rJ[(c+ +c_nh 

+(c+ - C_m2 +(b+ +bJXl +(b+ - bJX2] 

+exp(-ik'r2)[(c+ -cJ1]l +(c+ +C_m2 

+(b+-b2)Xl+(b++bJX2])' (6.36) 

and in place of the homogeneous system (6.20) one has 
the inhomogeneous linear system 

d U 1]l +d121]2 +d1aXl +d14X2 

= -h(k)[(c+ +cJexp(ikr1) +(c+ -cJexp(ikr2)], 

d211]1 +da21]2 +d2aXl +d23X2 

= -~'Y(k)[(c+ - cJ exp(ikr1) +(c+ +cJ exp(ikr2)], 

d311]l +d321]2 +d33Xl +d3~2 

= -h(k)[{b+F+ + b_FJ exp{z'kr1) + (b+F+ -b_FJ 

xexp{z'kr2)], 

d411]l +d421]2 +d43Xl +d~2 

= -~'Y(k)[(b+F+ -byJexp(ikr1) + (b+F+ +b_FJ 

xexp(ikr2) ], 

(6. 37a) 

(6. 37b) 

(6.37c) 

(6.37d) 

where the quantities dlJ are defined by Eqs. (6.21), but 
now F ,o stands for F,o,In(w;r), defined by 

F,o,ln(w;r) = J dk'y2(k')[1 ± exp(ik'r) J/(Wk' - W - ie) (6.38a) 

(6. 38b) 

Here F£(w;r) is defined by Eqs. (5.9), and of course 
k = (w2 _1l 2)1/2. 

The nonhomogeneous system of linear equations 
(6.37) allows the computations of 1]1> 1]2' Xl> and X2' 
Once these quantities have been computed, u(k,k') is 
also known, from Eq. (6.36), and therefore the (in
coming) scattering eigenfunction (6.32) is completely 
and explicitly determined. 

To solve the system (6.37) it is convenient to intro
duce the quantities 11,0 and Xu as it was done previously 
[see Eqs. (6.22-23)]. Then in place of the system 
(6.37) we get two decoupled systems of two linear 
equations: 

(wo,o - Wt)1],o + c,oX,o= - y(k)cJexp(ikr1) ± exp(ikr2)], 
(6.39a) 

c,.F,01],o +(1 + b£F ,orX,o = - y{k)b,.F ,o[exp{ikr1)± exp(ikr2)]· 

(6. 39b) 
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Here one must take either the plus sign or the minus 
sign wherever the double sign appears. 

The solution of this system is 

11,.= - y(k)c~,[exp(ikrl) ±exp(ikr2)]jD,., 

i.= -y(k)[b.F,.(wo,*, - Wt) - c,.F,.][exp(ikr1 ) 

± exp{ikr 2) liD *' 

(6.40a) 

(6.40b) 

with D,. defined by Eq. (6.25) (with the substitutions 
previously mentioned). Thus we get 

111 =ty(k){[(c.lD.) +(cjDJ]exp(ikrJ 

+ [(c.lD.) - (cjDJ] exp(ikr2 )}, (6.41a) 

112 = -ty(k>{[(c.lD.) - (cjDJ] exp(ikr1) 

+ [(c.lD.) + (cjDJ] exp(ikr ll)}, 

and 

u1n(k,k') =v1n(k, k')/(wt -Wit' +ie) 

with 

V(k,k') =y(k)y(k') exp[(i/2)(k -k')(r1 +rll)] 

(6. 41b) 

X ([cos(tkr) cos(tk'r)lI{[(wo. - wt)/[b.(U. 

- Wt)] + F.,ln(wt;r)} + [sin(tkr) sin(tk'r)]/ 

{[(wo_ - wt)/[b_(U_ - Wt) 1 + F_,in(Wt;r)}). 

(6.42) 

Insertions of these formulas in Eq. (6.32) yields an ex
plicit expression for the incoming scattering state. The 
outgoing scattering eigenfunction obtains from the in
coming one changing everywhere e into - E. 

Once the incoming and outgoing scattering states are 
explicitly known, the scattering amplitude is easily 
computed from the formula 

(k', out Ik, in) = li(k -k') - hili(w).' -wt)T(k' ,k). 

(6.43) 

Here T(k' ,k) is the scattering amplitude from an initial 
state characterized by the boson momentum k into the 
final state characterized by the momentum k'. It is 
connected to the differential cross section by 

do/dU' =(21T)4w ll i T(k' ,k}j2, (6.44) 

where, of course, 

k=k'=(w2 _ Jl2)1/ 2• (6.45) 

From Eq. (6.43), using Eq. (6.41) together with the 
companion equation for uout(k,k'), one gets 

(6.46) 

Inserting in this formula the explicit expression of 
v1n(k,k'), Eq. (6.42), and the analogous expression for 
vout(k,k') [obtained replacing F,..in(w;r) in Eq. (6.42) 
with F,.,out(w;r)=F±~ln(w;r)], one gets finally 

T(k',k)=exp[(i/2)(k -k')(r1 +r2») 

with 

X [t.(w;r) cos (tkr ) cos(tk'r) 

+ tJw;r) sin(tkr) sin(!k'r)], 
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l.(w;r) =y2(k)/([wo,.(r) - w ]j[b",(r)(U .(r) - w)] 

+F*(w;r) +iIT.\.Il(W>{1 ±[sin(kr)/(kr)]}). (6.48) 

In this formula we have explicitly displayed the depen
dence of all quantities upon r. Let us recall that b*(r), 
wo.(r) , and U.(r) are defined by Eqs. (6.12-15), that 
F.(w;r) is defined by Eqs. (6.9), and that .\.(w) is related 
to the form factor y(k) by Eq. (5.6b). 

From the explicit expressions (6.47) and (6.48) one 
can verify that the scattering amplitude T(k', k) has all 
the canonical properties (time reversal, unitarity, 
causality, i. e., analiticity, correspondence between 
poles and bound states). It depends of course on the 
positions r 1 and r 2 of the two N baryons, but only 
through the difference r::::: r 1 - f2 (except for a phase 
factor, that does not affect the scattering cross section). 
Particularly remarkable is the analogy between the 
present expression of the amplitude describing the scat
tering of one e boson over two (fixed) N baryons, with 
that describing the scattering of one boson over a single 
N particle (see Sec. 3). Indeed we report here only re
marks that are specific to the two-baryon case, refer
ring to the analogy with the treatment of Sec. 3 for all 
other considerations (including, in particular, any men
tion of the relations between poles of the scattering 
amplitudes and bound states and resonances). 

The nonspherically symmetrical nature of the scat
tering target, constituted by the two N baryons located 
at r 1 and r 2 • justifies the remarkable angular depen
dence of the differential cross section (6.44) implied by 
the scattering amplitude (6.47); note that there is a de
pendence both upon the direction of the incident beam, 
i.e., the direction of k (relative to the vector r charac
terizing the target) and upon the direction of observa
tion, 1. e., the direction of k'. Of course if the wave
length 1/k associated with the scattering particles is 
much larger than r, then the nonisotropic nature of the 
target is not felt by the scattering beam; in fact, in this 
case the scattering turns out to be spherically sym
metrical, namely only S waves contribute to it, and the 
total cross section reads 

O'(w)::::: 4mw2 _ j.L 2)-1 [ ITA 2(W)]2 

X[([w - Wo.(r) l!{b.(r)[w -U.(r)]} + F(w;r»2 

(6.49) 

an expression that is quite Similar to the expression 
(3.31) of the total cross section for scattering on a 
single N baryon. Note however that even if the position 
of the two N baryons coincide, 1. e., if r = 0 (or rather, 
Jlr« 1), Eq. (6.49) [where wo.(O), b.(O), and U.(O) 
could be evaluated from their definitions (6.12-15) and 
from Eq. (5.lOc), and F(w;O) from Eq. (5.10d)] does 
not quite COincide with Eq. (3.31). 

The treatment given in this section applies of course 
also to the usual Lee model, in which case 

(6.50) 

The bound state problem in this case had been treated 
in the literature (see the textbook by Baz et al., Ref. 2), 
but the scattering case does not appear to have been 
discussed previously (except in the special case r=OlO). 
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7. CONCLUDING REMARKS AND OUTLOOK 

In this paper we have given the explicit exact solu
tions of the nonlinear Lee model in some sectors of its 
Hilbert space. The motivations for studying the non
linear Lee model have been outlined in the Introduction. 
Here we collect some remarks relative to the results 
reported above, and we list a number of further prob
lems that are suggested by these findings. 

The most remarkable feature of the model under con
sideration is the possibility of solving it exactly (at 
least in some sectors of its Hilbert space), in spite of 
the arbitrariness of its (nonlinear, possibly nonpoly
nomial) interaction. A characteristic feature is the fact 
that only the values that the function f(x) (that charac
terizes the structure of the interaction) takes for cer
tain values of its argument play any role in the solu
tions; indeed, the results of Sec. 2 [in particular, Eq. 
(2.12)] imply that, for all sectors with only one baryon 
present, only the values of f(x) [or rather of its even 
and odd parts, fe(x) and fo(x)] at the denumerable and 
discrete set of pOints X=AS 1

/
2

, s being a nonnegative 
integer, play any role. This result is confirmed by the 
explicit complete solution of the simplified model of 
Sec. 4. However, as soon as sectors of Hilbert space 
with more than one baryon present are conSidered, then 
values of fe(x) and fo(x) for other arguments become 
relevant; indeed, values of these functions for a con
tinum of determinations of the argument x become 
relevant, depending on the relative positions of the 
baryons (that are by assumption fixed in space, but 
whose relative position is arbitrary). 

An interesting open problem is that of ascertaining 
the conditions that the function f(x) should satisfy in 
order that the Hamiltonian (1.4) of the nonlinear Lee 
model be physically sound (and, in particular, possess 
a spectrum with a lower bound) for all sectors of the 
Hilbert space, including those with an unlimited number 
of baryons and/or bosons. It is plausible to conjecture 
that the conditions found for the simplified model of Sec. 
4 are valid also for the general case. 

Another interesting problem is to study the nonlinear 
Lee model if the functions fe(x) andfo(x) are not entire, 
and possibly not even analytic at X= 0, even though they 
are finite and well defined for all real values of x. 
While it is plausible to conjecture that all the results 
given in this paper would remain valid in this case, the 
question of giving a precise mathematical definition to 
f(Hr ), and of proving the results, might not be an en
tirely trivial one. 

Of the problems whose study is suggested by the find
ings reported in this paper, the most obvious one is the 
treatment of other sectors of the Hilbert space. Partic
ularly interesting is the sector with Q1 = 1, Q2 = -1 
(BV - BBN sector), that, already in the case of the usual 
Lee model, is quite complex and phenomenologically 
rich. 2 The solution of the nonlinear Lee model in this 
sector has been obtained in collaboration with A. Degas
peris and will be reported in a separate paper. 11 

Another interesting sector that should be solvable 
after the fashion of Sec. 6 is that characterized by 
Q1 = 3, Q2 = 2 (NNV - BNNN sector). One interesting 
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physical problem is the (presumable) presence of three
body forces acting between the baryons, in addition to 
two-body forces, that should be displayed by the solu
tion in this sector. A more general case worthy of 
study and that might also be solvable in closed form, is 
that characterized by Q1 = n, Q2 = n - 1, with n an 
arbitrary positive integer. The limit of large n would 
then be particularly interesting. In the case of the usual 
Lee model, these problems have been investigated by 
Scarfone, 12 who considered also the 2 V sector (Q1 = 2, 
Q2=0).13 

Another area that would be interesting to explore, in 
connection with the solutions given in this paper, and 
also with those mentioned above, is the version of the 
nonlinear Lee model in which also the baryons have the 
proper kinematics, i. e., the model that obtains from 
that considered here if the assumption that the baryon 
mass is infinite is dropped. The usual Lee model with 
this generalization has been discussed (in some sectors 
of its Hilbert space), 14 and the nonlinear Lee model 
should also be treatable. Sectors with more than one 
baryon present, such as that considered in Sec. 6 above, 
should be particularly interesting. An intermediate ap
prOximate approach to this problem, in the spirit of the 
Born-Oppenheimer apprOximation, would be to use the 
results of Sec. 6 of this paper to compute the potential 
between the N and V baryons, and then study the dy
namics of these particles (now with a finite mass) under 
the effect of this interaction. 

On the same line, and certainly very interesting, al
though probably much too difficult to hope for explicit 
solutions, would be the study (both from the dynamical 
and from the statistical-mechanical points of view) of 
the many-baryon problem, as outlined above, (i. e., 
conSidering, to begin with, the sector Q 1 = n, Q2 = n -1). 

As we indicated in the introduction, in this paper we 
have been mainly concerned with the physiological as
pects of the Lee model, or rather of its nonlinear gen
eralization. Thus we have introduced a cut off in the in
teraction term, with the stated purpose to avoid all dif
ficulties with divergent integrals. On the other hand, 
the Lee model has been mostly studied in connection 
with the renormalization approach to (ultraviolet) di
vergences; moreover, the current interest in nonpoly
nomial field theories is mainly motivated by the hope 
that the nonpolynomial nature of the interaction will 
eliminate the divergences that plague relativistic 
quantum field theory. Thus it is certainly worthwhile to 
investigate whatever happens to the nonlinear Lee model 
when the cut off in momentum space is suppressed, and 
ultraviolet divergences appear. The most interesting 
question in this connection is: Is it possible that the 
nonlinear, possibly nonpolynomial, nature of the model 
be such as to compensate the infinities, so that a finite 
result emerges even in the local limit, i. e., when no 
form factor is introduced? This question is answered in 
a separate paper, written in collaboration with A. De
gasperis, where a generalized version of the nonlinear 
Lee model is discussed from this point of view. 4 

APPENDIX A 

In this appendix we derive Eq. (2.12). 
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It is convenient to consider separately the even and 
odd parts off(Hr). Beginning with the even part, let us 
evaluate 

(Hr)2n = aa+aa+'" aa+p" + a+aa+a··· a+aP_, (A. 1) 

where the operators a and a+ enter n times and P+ resp. 
P_ are the projection operators over the states I +) 
resp. 1-), Eq. (2.13). This formula has been obtained 
from the definition of HI> Eq. (2.4), and the remark 
that 

(A. 2) 

It is now convenient to introduce the coefficients cn•m 
setting 

(A. 3) 

where on the left-hand side the operators a and a+ enter 
again n times each and where A is the quantity defined 
by Eq. (2.7). 

We now note the formula 

aa+(a+)mam=(m +1)A2(a+)mam + (a+)m+1am+t, (A.4) 

that follows easily from Eq. (2.7). 

Using this formula, we obtain from Eq. (1. 3) the 
recursion relations 

Cn+1,m = (m + 1)cn.m +c",m-l> (A.5) 

with the conditions 

cn,o = cn,. = 1. (A. 6) 

As can be easily shown by direct substitution, these 
recursion relations are solved by the formula 

m 
cn,m=(_)m L; ys(s +1)n/(m -s)l, (A. 7) 

.0=0 

the coefficients y s being determined by the triangular 
system of linear equations 

" L;ys(s + 1)"/(n-s)1 =(_)n. 
5=0 

This system, in its turn, is solved by the simple 
formula 

ys=(-)s/sl, 

as implied by the identity 

(A. 8) 

(A.9) 

t (_)S(s +A)m/[sl(n -s)l] ={O for m =0,1,2, ... ,n -1, 
s=o (-)n for m =n. 

(A. 10) 

In this equation A is an arbitrary constant; in our case 
A = 1. Although this identity must be well known, we 
have not been able to find it in the usual compilations 
of mathematical formulas, and therefore we provide an 
explicit proof of it in the follOwing Appendix B. 

Thus we may conclude that 
m 

cn,m = (_)m L; (_)S(s + 1)/[s!(m - s) 1], (A. 11) 
s=o 

and inserting this expression in Eq. (A. 3) we get 

aa+aa+··· aa+ 

(A. 12) 
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The sum over m extends effectively only up to m = n, 
because for m > n the sum over s vanishes [as implied 
by Eq. (A.10)]. 

In a similar fashion it can be shown that 

= i5 (_)m(a+)mamA2n-2m t (-)Ss"/[sl(m -s)I], (A.13) 
m~ ~o 

where again in the left-hand side a and a+ enter n 
times each. 

From these expreSSions, and from Eqs. (1. 6a) and 
(A.1), one obtains immediately 

., 
f.(Hr ) = L; (_)m(a+)mamA 2n-2m 

m~ 

m 
X L;(-)s[sl(m-s)I]-1[P.,f.(A(s +1)1/~ 

s=o 

(A. 14) 

Let us now turn to the odd part of f(Hr). We must 
evaluate 

(A. 15) 

where in the right-hand side a appears n + 1 times and 
a+ n times. 

To obtain this expression we have again used the 
definition of Hp Eq. (2.4), and Eqs. (A.2). 

It is now easily seen, proceeding just as above, that 

" aaot-a - •• a+a =: 2::; cn,mA2rr-2m(a+)mam+l, 
m=O 

(A. 16) 

where in the left-hand side a appears n + 1 times and 
a+ n times, and the coefficients cn,m are those already 
introduced. Using the explicit form (A. H) of these co
efficients and proceeding as above, one gets 

., 
fo(Hr) = ~ (_)m[(a+)mam+10'+ + (a+)m+1amO' JA -2m 

m 
xL; (_)s[S I(m -s)1 ]-Yo(A(s +1)1/2/A(s +1)1/1. 

5=0 

(A. 17) 

This equation, together with Eq. (A.15), reproduces 
Eq. (2.12), that is therefore proved. 

It should be emphasized that the rhs of Eqs. (A. 15) 
and (A.17) [and therefore also of Eq. (2.12)] possess 
generally a finite limit as A - 0, because if the function 
f(x) is holomorphic at X= 0, the Taylor expansions of 
expressions like 

m 
L; (_)s[s 1 (m - s )!]-1f(x{s + A» 
s~ 

begin with a term of order x m , since the coefficients 
of the terms xm with n <m vanish due to Eq. (A. 10). 

APPENDIX B 

In this appendix we provide a proof of Eq. (A.10). 

We start from the binomial theorem 
n 

L; (_)SXS /[s 1 (n - s)!] = (_)n(n!)-1(x _1)n. (B.O 
5=0 
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We now apply m times, to both sides of this equality, 
the operator X1-A(d/dx)xA, getting 

" L; (_)5(S +A)mx 5/[s! (n -s)!] 

(B.2) 

We then set x equal to unity. Then clearly, if m <n, 
the rhs vanishes, and if m=n, the rhs reduces to (_)n, 
because the only term that does not vanish when x is 
set to unity is the one in which all differentiations have 
acted on the term (x _l)n. QED 

APPENDIXC 

In this appendix we prove Eqs. (6.7-11). 

We begin writing 

Hr =Hr(l) + Hr(2), 

where 

Hr{j) = J dky(k){exp(ik. r)a(k)a.{j) +h. c.}. 

We then note, by explicit computation, that 

Hr(1)Hi1) 1+, -) =HA!(r) + A~(r)] 1+, -), 

Hr(2)Hr(1) 1+, -) =HA!(r) - A~(r)] 1+, - ), 

Hr(l)Hr(2) 1+, -) = 0, 

Hr(2)Hr(2) I +, -) = 0, 

(C.1) 

(C.2) 

(C.3a) 

(C.3b) 

(C.3c) 

(C. 3d) 

with A~(r) defined by Eqs. (5.8). These equations imply 

(Hr)21 +, -) =H[A!(r) + A:(r)] 1+, -) 

+[A!(r) -A:(r)]I-, +)}, (C.4) 

and, more generally, by symmetry 

(Hr)21 a, - a) =H[A!(r) + A:(r)] I a, - a) 

+ [A~(r) - A:(r)] 1- a, a)}. 

Here, and in the following, a stands for + or -. 

This equation implies that 

(C.5) 

(Hr )2" I a, - a) =y",.(r) I a, - a) +y",Jr) 1- a, a), (C. 6) 

with 

Yo,.(r)=l, Yo,-<r) =0, 

and 

)I".l.O(r) =H[A!(r) + A:(r) ]Yn,,,,(r) 

+ [A!(r) -A:(r)]Yn,_",(r)}. 

To solve these recursion relations we introduce 

rn)r) = Yn)r) ± y".-<r), 

so that 

Yn)r) =Hrn,.(r) ± rn,Jr)]. 

Then the recursion relations (C. 8) become simply 

rn+l,.(r) = A~(r)r ",.(r), 

and the boundary conditions (C. 7) become 

r o,.(r) = 1. 

(C.7) 

(C.8) 

(C.9a) 

(C.9b) 

(C.lO) 

(C. 11) 

The quantities r" ... (r) are therefore given immediately 
by the simple formula 
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(C.12) 

and therefore Eq. (C.9b), together with Eqs. (C. 6) and 
(1. 6a), immediately imply Eq. (6.7), namely the first 
equation we had to prove. 

The proof of the subsequent equations is now easy. 
From Eqs. (C.6) it follows immediately that 

(Hr)2,,+ll +, - ) = Hr{Y",.(r) I +, -) +Yn• Jr) 1-, +)} (C13a) 

= J dk1'(k){y n • .(r)exp(-zk. r 1 ) 

+ Y",Jr) exp( - ikr2)}a+(k) 1-, - ), 

(C.l3b) 

and using the explicit expression of Y n .. just found, Eqs. 
(C. 9b) and (C. 12), and Eq. (1. 6b), one obtains Eq. 
(6.8) (with O! = +). In a completely analogous fashion one 
proves Eq. (6.8) for O! =-. 

To prove Eq. (6.11), one notices by direct computa
tion that 

Hr J dku(k)a+(k) 1-, - )=x(r1)1 +, -) +x(r2)1-, +), 

with x(r) defined by Eq. (6.10). Therefore, 

(Hr)2n+l J dku(k)a+(k) 1-, -) 
= [x (r1)'Y n. +(r) + X (r 2)'Y n.-<r)] 1+, - ) 

+ [x (r1)'Y n, Jr) + x(r2)'Y n,.(r) ]1-, +), 

(C. 14) 

(C. 15) 

where we have used Eq. (C.6). Using the explicit form 
of 'Y", .. (r) and Eq. (1. 6b), Eq. (6.11) follows. 

Finally one uses Eqs. (C.14), (C. 13) (with n -1 in 
place of n) and the analogous equation with 1 and 2 ex
changed, to get 

(Hr)2" J dku(k)a+(k) 1-, - ) 

= J dk'Y(k){Yn_1,.(r)[x(r1) exp(lkl'l) + x(r2) exp(-lkl'2)] 

+ 'Yn_1,Jr)[x(r1) exp( - ikr2) 

+ x(r2) exp( - ikr1)]}a+(k) 1-, -). (C. 16) 

Inserting here the explicit form of Y n .. (r), and using 
Eq. (1. 6a) [also recalling that 1(0) vanishes by assump
tion], Eq. (6.9) obtains. 
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A comparison of two transformation theories of 
classical mechanics 
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A comparison is made of two transformation theories which can be used in classical mechanics: the 
averaging method as generalized by Kruskal and the superoperator transformation theory used in 
statistical mechanics by Prigogine et al. For the class of systems considered. a striking connection is 
found which, on the one hand, illustrates some of the general features of the superoperator method 
and, on the other, provides an interesting method for calculating invariants of nearly periodic 
systems. This latter method is shown to be equivalent to, but more systematic than, that developed 
by McNamara and Whiteman. 

I. INTRODUCTION 

In recent years there has been introduced by the 
Brussels school a transformation theory for use in non
equilibrium statistical mechanics. 1 The theory is ex
pressed in terms of superoperators which act on phase 
functions or density matrices, and an important role is 
played by the notion of subdynamics, the time evolution 
of an appropriate projection of a phase function or den
sity matrix. 1,2 Now it is of some interest to see how 
such a theory is related to other transformation 
theories existing in classical or quantum mechanicS, 
and some progress in this direction has been achieved 
so that connections are now known with the usual 
quantum-mechanical transformation theory for systems 
with a discrete spectrum3- 5 and with Hamilton-Jacobi 
theory for classical systems describable in action 
angle variables. 6 However, these systems are, in a 
sense, too simple since in these cases the projection 
operator for subdynamics projects out constants of the 
motion, and the subdynamics thereby become trivial. 
The purpose of the present paper is to establish con
nection with another transformation theory of classical 
mechanics, the "averaging method" as generalized by 
Kruskal,7 and show that this, while still a special case, 
has more content than the simple examples mentioned 
above. In this way, we have a nontrivial realization of 
the superoperator theory which exemplifies some of 
the general features and, reciprocally, the results of 
the Brussels school have implications for the "averaging 
method" leading, for example, to a particularly con
venient way of calculating invariants. 

In Sec. 2 below we outline the two transformation 
theories to be compared and show the possibility of 
connecting them. This is followed by a proof of the con
nection by a perturbation series method. Sec. 5 is a 
brief discussion on the nature of the approximations in
volved, an important prerequisite for Sec. 6 in which 
we treat our class of systems as an example of the 
generalized transformation theory and produce some of 
the more important superoperators. Finally, in Sec. 7, 
we describe a simple method of calculating invariants 
and compare it with methods previously used. 8 

II. THE TRANSFORMATION THEORIES AND 
THE POSSIBILITY OF CONNECTION 

In the transformation theory of Prigogine and his co
workers, mechanical systems are described in terms 
of phase functions of the canonical coordinates and 
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momenta, viewed as elements of some suitable linear 
space, which evolve in time according to the Liouville 
equation 

i ~~ (Ql"'QN ,PI'''PN ) = If E i{H ,j}, (2.1) 

where {,} is the Poisson bracket. 

Since the operator l involves all N degrees of free
dom, in a macroscopiC system it is hopeless to look for 
a solution of this equation as it stands. One common 
approach to this problem is to introduce reduced dis
tribution functions, obtain their equations of motion 
from (2.1), and try to solve the resulting system of 
equations. This leads rapidly to nonlinear equations 
and incredibly difficult mathematical problems. The 
other approach, of interest here, is to attempt to ex
tract particularly relevant parts of (2.1) but always 
maintaining linear equations. The techniques for dOing 
this are well described elsewhere, 2, 9 so we simply 
mention briefly that one decomposes l into lo +el1 , 

where ell is supposed to be small in some sense, and 
makes a related decomposition of the phase function fby 
use of the projector P, projecting onto the closure of the 
nullspace of Lo, along with its complement Q = 1 - p. 
One then introduces further linear operators, defined in 
terms of L and P, which allow the appropriate part of 
the time evolution to be described by a kinetic 
equationl. 2, 9 

(2.2) 

for the P part of the phase funtion. The Q part is then 
given by 

Qf=CPf (2.3) 

and here we are employing the linear operators nl/J and 
C, respectively called the collision and creation 
operators. It has been shown that certain undesirable 
features of (2.2) (e.g. nonhermiticity of nl/J) can be re
moved if one works not with Pf but with a transformed 
phase function fa related to Pfby 

fR(t) = X·l Pj(t) , (2.4) 

in terms of which the evolution equation becomes 

(2.5) 

with a Hermitian collision operator 1/>. The linear 
operator X·1 which performs this useful transformation 

Copyright © 1973 American Institute of Physics 1706 
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is the solution of the Mandel-Turner equation1
,10 and 

can be written to any desired order as a formal series 
in the parameter f. 4 

The second transformation theory we shall use applies 
to certain types of differential equations and has been 
developed by KruskaF following the averaging method 
of Krylov and Bogoliubov. For the simplest case the 
equations are of the typeB 

~~ =1 +fj(v,y,d, 

(2.6) 
dy dt =fg( V,y,f), 

where y = (Y17 •.. 'YN) and j, g are periodic in v with 
period 7 and 0(1) for the small parameter f. Equations 
(2.6) describe a slow drift imposed on an oscillatory 
motion and the idea is to transform to new variables 
ct>, z: 

ct>=4.>(v, y), v=N(ct>,z), 

(2.7) 

z= Z(v, y), y = Y(ct>,z), 

which separate the oscillation from the drift to give 
equations of motion 

dct> =1 () dt +fW Z,f , 

(2.8) 

dz 
dt =d~Z,f). 

We also require that ct> be an angle like variable and that 
Z be periodic in v, i.e. , 

4.> (v +7, y) =4.>(v,y) + 7, 
(2.9) 

Z(v+ 7,y) = Z(v,y). 

Kruskal has shown how starting from v, y, it is 
possible to find "nice" variables ct>, z, satisfying (2.8), 
(2.9), as formal power series in L The solutions of 
(2 .8) are asymptotically correct solutions of (2.6) in the 
following sense. One solves Eqs. (2.8) truncated at 
order fn say, and converts the solution to v<n) , y<n) in 
v, y space by a correspondingly truncated version of 
the inverse transformation (2.7). It has been proved7 

that if v*, y* are solutions of the original Eqs. (2.6) 
with the same initial conditions (to order f") as v<n), y<n) 
then 

v* - v<n) = 0(fn+1), y* _ y<n) = 0(fn+1 ) (2.10) 

jor times in a range oj order l/L Kruskal has further 
shown, am we shall exploit this, that if the original 
Eqs. (2.6) are in Hamiltonian form, the transformation 
to "nice" coordinates can be taken as a canonical 
transformation. 

The transformations just described are point trans
formations of RN+l taking v, y, defined in some domain, 
to ct>, z, whereas the transformation used by the 
Brussels school is of phase functions. For definiteness 
in making the connection, let us consider only those 
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phase functions defined as follows. We take D as a 
definite connected set in RN and use phase functions 
j E F(D ), the set of real functions on R x D, which are 
continuous and periodic in their "angle" variable a E R 
and, for fixed a, are restrictions to D of functions 
which are bounded and continuous on some open neigh
borhood D 5 of D. Now if the functions appearing in (2. 6) 
belong to F([) so do the functions in (2.7) (or at least 
their coefficients in an f expansion have this property), 
and it is obvious that for small f the Kruskal transfor
mation takesD5 to another open neighborhood ofD. With 
each transformation (v,y)- (ct>,z) we can now associate 
a linear operator V: F(D) - F(D) by 

[Vj](ct> , z) = (f](v,y), (2.11) 

so that Vj is a function defined on a neighborhood of D , 
and hence onD. Since the point transformation is in
vertible so is the operator V and we have 

[V- 1g](v,y) = [g](ct> , z). (2.12) 

In order to link the Mandel-Turner transformation to 
V, we are obliged to introduce several more linear 
operators. Following the lines of an argument used in 
the quantum case,s we may write for L, the Liouville 
operator defined in F(j) through (2.6), 

I ZI ~ L fdz
1 
=v-1 Z' _ ~LV_IVjdzl 

-11~ 1 ( -1 1 )mVfd 1 
=V cfn(ozl_VLoy-l~eVLlV zl-VLoV-1 z, 

(2.13) 

where C is any contour avoiding the singularities and we 
have used the usual resolvent expansion. Now the 
operator 

VLV-1 = - i(l +ew)i.. - iEh· ~ 
act> az 

plays the role of the Liouville operator in coordinates 
ct>, z and governs the motion given by (2.8) in which the 
angle variable is well separated from the others. We 
therefore introduce the projection operator defined on 
F(j) by 

1r 
[pg](z)= T 10 [g](ct>,z)dct>, (2.14) 

which is the nullspace projector for VLo V-I and use this 
to decompose Vjin (2.13) into PVj+(1- p)Vj. We are 
now in a position to define the fundamental projection 
operator n: F(j) - F(j) as usualll by taking the contour 
C on the right-hand side of (2 .13) to be a small circle 
'Yo in the neighborhood of Zl = o. Since VLo y-l (which is 
in fact -ia/act» has a discrete spectrum there is no 
difficulty in doing this. Thus 

/. '" 1 ~ l)n nj= y-l 1i Zl _ VL V-I eVLo y-I Zl _ VL V-I 
Yo 0 0 

X [PVj+ (1- P)Vj]dz l
• (2.15) 

We now observe from (2.8) that VL 1 y-l has no ct>-de
pendence other than a term containing a/act> on the 
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extreme right. It follows that the contribution of 
(1 - p)Vfto (2.15) is zero since all the propagators 
assume the form 1/(zl-21Tnh'), n¢O, and vanish on 
integration. It is also easy to see that the only nonzero 
contribution coming from PVf is from the term n == O. 
In this way we have proved 

Ilf== V-I r ~ PVfdz l == y-1PVf. 
Jro z 

(2.16) 

The transformation V is defined on the whole of F(j) 
and is to be compared with the transformation A;l of 
Eq. (2.6) of Ref. 1b, whereas the Mandel-Turner 
transformation is defined only on the P-projected part 
of F(j). Following Ref. 1 b, we have that the transfor
mation PV == VII (corresponding to A-I II of Ref. 1) will 
give rise to the Mandel-Turner transformation if and 
only if it satisfies the equation 

apv == PV all 
ae ae 

or, in view of (2. 16) , 

pva~l P==O. 

(2.17) 

(2.18) 

We thus have the following position. Kruskal's trans
formations (2.7) provide us through (2.11) with 
operators V acting on phase functions and a given V 
gives a Mandel-Turner transformation if and only if 
(2.18) is satisfied. In the next section we show that for 
the class of systems considered there is an essentially 
unique canonical transformation to "nice" variables 
which satisfies (2.18). 

III. PROOF OF EQUIVALENCE 

In the remainder of this paper we consider only the 
simplest systems to which Kruskal's method may be 
applied,8 those described by a Hamiltonian of the form 

(3.1) 

where O!,l;q,p are canonically conjugate variables, n is 
periodic in O! with period T, and € is a (small) param
eter. It is worth pointing out that by canonical trans
formation a large class of Hamiltonians may be put into 
the form (3.1): in particular those of the form 

n 

H==~w/J/ +eV(O!l ••• 0!,;,J1 '" I N ), (3.2) 

where O! ,J are action-angle variables, V is periodic in 
the O!'s with period 1, and the ratio w/wJ is rational for 
all i and j. 

The equations of motion from (3.1) are of the form 
(2.6) so we commence by finding the canonical changes 
of variable which make the new Hamiltonian independent 
of the new angle variable and which are, therefore, 
changes to "nice" variables in Kruskal's sense. Suppose 
the transformation takes O! ,I,q,p to variables (3,J,Q, P 
by means of a generating function S(O! ,J,q,P,e). Then 

(3.3) 

The transformations we seek are of the form 

{3 == O! + a function periodic in O! 
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and similarly for J,Q,P which implies that S has the 
form 

(3.4) 

with each s(n) periodic in O! with period T. Since Sis 
independent of time, the old and new Hamiltonians H and 
K take the same value at a given phase point, i. e. , 

K(J,Q, P ,e) ==H(O!, l,q,p.e). 

In the independent variables O! ,J,q,P,e this gives 

(as \ as I. as as) 
K~'ap,p,eJ ==aO! +en \O!'aO!,q'aq (3.5) 

which is the basic equation to be solved for K and S. 
This is done by expanding K(J,q,P,e)==:En=oenK(n)(J,q,P) 
and solving (3.5) order by order in e: 

kroth order 

(3.5) gives 

as (0) 
K(O) (J q p) ==--

" aO!' 

whence 

K(O) ==J, 

S(O)==O!J+q'P' 

First order 

(3.5) gives 

as<l) 
K(l)(J,q,p)==-- +n. 

aO! 

(3.6) 

(3.7) 

K(1) is determined by integrating over a period in O! and 
S(1) from the remaining oscillatory part as 

K<l) (J,q,P) ==!.IT n(O! ,J,q,P)dO! =U(J,q,P), 
T 0 

S(1) == _ fa (n _ O)dO! + F(l) (J,q, p) 

with F<l> arbitrary. 

General term 

(3.8) 

(3.9) 

K(n) == as (n) _ aK(l) • as(rr-1) +~ as(n-1) + an . as(n-1 ) 

aO! aq ap aJ aO! ap aq 

(3.10) 

+terms involving K(r) , S(I) with 1 <r<n, 

t<n-l. 

Thus we can solve for K(n) in terms of lower order 
expressions and for s(n) , which takes the form 

fa dO! {expression involving lower orders} + Frr) (J,q, p) 

with F(n) arbitrary. 

In this way, we can determine, through S, all possible 
sets of "nice" canonical coordinates and we see that 
these differ only in the choice of the functions 
F(n)(J,q,P). 
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We have constructed the variable P to be cyclic for the 
new Hamiltonian K so that the conjugate momentum J is 
a constant of the motion. It is not obvious from the above 
that each choice of "nice" canonical coordinates gives 
the same J but we shall now show that this is, in fact, 
the case. 

Suppose that (/3,J,Q,P), (/3*,J*,Q*,P*) are two sets 
of coordinates determined as above with different 
choices of F(n). Following Kruskal's terminology, 7 a 
(J,Q,P)-ring is the set of points (p,J,Q,p) with (J,Q,p) 
fixed and /3 varying from 0 to 7". It can be shown (Sec. 
C.3 of Ref. 7) that a (J,Q,P)-ring is a (J*,Q*,P*)-ring. 
For a definite ring then 

7"J == pJ df3 + P . dQ == pJ* d{3* + P* . dQ* == 7"J* , (3.11) 

where p means integrate round the ring and the second 
equality follows since the two sets of variables are 
canonical. 12 This shows that J and J* take the same 
values. 

A lengthier, but perhaps more revealing, argument 
may be formulated in the following way, which indicates 
that the F(n) dependence in J just cancels out. We write 

oS oS 
S==S(OI,J,q,P,e), 1==001' P==oq 

and calculate J==J(OI,I,q,p,e) directly to obtain 

OS(l) OS(2) 
J==l -e--aa(OI ,l,q,p) -e2--aa(0I ,l,q,p) 

02S(1) oSCl) 02S(1) oSCl) 
+e2 __ • -- +e2 __ • -- + 0(e3 ) 

00101 001 oOlop oq . (3.12) 

We now substitute the expressions for S obtained in 
(3.7) et seq. and for definiteness choose.Jhe arbitrary 
lower limit in f'" (0 - '0 )dOl = n such that n == 0 (cf. Ref. 
8). In this way (3.12) yields (with Op=oO/opetc.) 

J ==1 +e(0 - '0) +e2('01 - 0 1)('0 - 0) +e2(Op - 'Op)n. 

+e2('O _ 0 )FCl ) +e2'O n _e2'O F Cl ) _e2n ~ +e2'O F(ll p p •• p .p .P .p - ~--."... 

+e20 1 (0 - 0) -e2 0 1 (0 - 0) -e20 pO. +e20pF~1) +e2 0 pO. 

- e2'ObF~1) + 0(e3 ) 

==I+e(O - n) +e2{n,n} - ~2{0,n} + 0(e3 ). 

(3.13) 

Thus J is independent of the choice of F(n) and is, in 
filct, the invariant of Ref. 8, Eq. (4.34). 

Now that we have characterized the transformations 
which may give rise to the operator V, we shall deter
mine which among these satisfy the Mandel-Turner 
equation. The condition for this is (2.18), or 

(3.14) 

Since the transformations V(e) and v-1 (€ + 5) are canoni
cal, so is V(e)V-1 (e + 0) and since only terms of order 5 
are required, the last may be considered as an infinites
imal transformation. More explicitly let V(e)V-1 (e + 0) 
induce the canonical transformation 

/3,J,Q,P- fJ' ,J' ,Q' ,P' 
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with generating function 

F(f3,J' ,Q, p') == {3J' +Q, P' + 5G(f3,J' ,Q, p') + 0(52 ). 

Then 

{3== ~~ == f3 + ~(f3,J' ,Q, p') + ... 

== (3 + 5~~ (f3,J,Q,p) + 0(52) 

and, similarly, 

Q'==Q+<'i~; ({3,J,Q,p), 

J' ==J - 5~~ ({:3,J,Q, p), 

P' ==P - ~((:3,J,Q,P). 

In this way one obtains 

[V(e)V-1 (e + o)fl({3 ,J, Q, p) == [j](B' ,J' ,Q', p') 

== [Jj(f3,J,Q, p) + o{r, G}({:3,J, Q,p) + 0(02). 

The condition (3.14) now becomes 

or 

{l. G} ==0, 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

where the bar indicates integration over a period of P. 
!quation (3 .19) can be satisfied for arbitrary f only if 
G is a function of J alone, so the condition under which 
V will satisfy the Mandel-Turner equation reduces to 

oG oC 09 (J,Q,P)==ap(J,Q,P) ==0. (3.20) 

The remaining part of our program is to determine 
G in terms of the S of (3.4) and see which choices of 
F(n) will satisfy (3.20). We write 

(3.21) 

so 

Q' ==q + ~~, (01 ,J' ,q,P' ,e + 0), (3.22) 

and introduce the notation OJ for differentiation with 
respect to the ith variable of a function, remembering 
that the argument of G is ({3,J,Q,P ,e) and that of 8 is 
(OI,J,q,P,e). Utilizing (3.16)wehave 

04G==1imi(Q' - Q) 
6-0 u 

(J' -J) P'-P 
==li~(04028)--0- + (04 0,p)-0- + 040s$ 

== - (0 4028)(01 G) - (040,p)(OSG) +040s$ (3.23) 

and similar expressions for the other derivatives of G. 
In terms of 01 ,J,q,P as independent variables these 
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equations become (i = 1,2,3,4) 

(08 08 ) 
0IG \a + OJ,J,q + op,P,E) 

(3.24) 

By expanding 8 and G as power series in E, equation 
(3.24) can be written order by order as 

0IG(O) (a ,J,q, p) = 0IS(ll (a ,J,q, p), 

0IGCl) =202S(2) - (0/02S(1l)0IG(O) 

- (oi04S<1»03G(O) - (Oj 01G(O)02S(I) 

- (0/03G(O»04S<1) , 

and so on, each time obtaining 

0IG(r-ll =o/(rS(r) +x(r», (3.25) 

where x(r) is determined from SCl) , ••. ,s(r-ll • 

Returning now to the possibility of satisfying (3.20), 
we see that we have 

03G(r-ll = 03{E(r) ('" ,J,q,P) + rF(r) (J,q,P)}, 

04G(r-ll = 04{E(r) (a ,J,q, p) + rF(r) (J,q, P)}, 

where E(r) is the sum of x(r) and the (known) oscillatory 
part of S from (3.9) et seq., and F(r) is the arbitrary 
function introduced in the equation for s(r). Thus we can 
arrange for (3.20) to hold simply by choosing 

rF(r) (J,q, p) = - E(r) (J,q,p) +D(r) (J), 

where D(r) is an arbitrary function of J alone. In this 
way, it is shown that among "nice" canonical transfor
mations, there are some which satisfy the Mandel
Turner equation, and these transformations differ by an 
additive function of J in the generating function. 

In summary then, this section has shown that, starting 
from the original form of the Hamiltonian (3.1), there 
exist many canonical transformations to "nice" 
variables (differing by the choice of F(n», that each of 
these leads to the same invariant J, and that from the 
members of this set we can pick a smaller set [differing 
by the choice of D(J)] which satisfy pv(0y-1/0E)p=0. 
However, on looking back to (3.3) it is easy to see that 
adding a function of J to the generating function simply 
adds a function of J to (3 but leaves J, Q, P unchanged. 
Since the projector P integrates over the angle variable, 
all the transformations differing by D(J) give exactly the 
same operator PV and this unique operator satisfies 
Eq. (2.17) with initial condition that Y(€ =0) is the 
identity mapping. 

IV. DEGREE OF APPROXIMATION 

In Secs. 2 and 3 we have made use of series expan
sions in powers of E, but these have all been in the 
nature of formal series with no discussion of conver
gence properties. One might begin such a discussion by 
asking if these series converge in the usual sense. The 
answer is that, in general, they do not. In fact, canoni
cal transformations such as we are discussing can be 
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viewed, especially if we regard (3.2) as the starting 
point, as an example of the general dynamical problem 
of finding normal forms for Hamiltonians. 13 From the 
work of Kolmogorov, Moser, and others in this field it 
is known that the series employed may well have a zero 
radius of convergence. Of course, it is possible to find 
many Hamiltonians for which the series will converge 
but this is to be regarded as a lucky accident and in no 
way the most common case. 

If we ask whether the transformations make any sense 
as asymptotic series then the answers are more 
satisfactory. As mentioned in Sec. 2, KruskaF has 
shown how, if we work in a restricted time range 
0< t<O(l/€) the transformed equations of motion supply 
solutions as near as we please to the exact solutions of 
the original equations. Of course, if we truncate the 
transformation series at some order €n say, then the 
old and new variables are related in a perfectly definite 
way via a convergent (finite) series for all t. However, 
for long times of order liE the solution of (2.8) will 
deviate from the true solution by an amount which is, in 
general, not small. 

In a similar way, the invariant J is an asymptotic in
variant. If one works with series truncated at order En 

the J so obtained does not remain exactly constant in 
time but varies according to oJlot=O(En+l). As the 
series for J does not, in general, converge this is the 
best one can obtain. 

Finally, it is clear that identical considerations apply 
to the phase-function formulation of the transformation 
theory, provided that we conSider only "smooth" phase 
functions. Thus if f satisfies a Lipschitz condition 

IIf(x)-j{x')II~clx-x'l, X=(II,y), (4.1) 

where IIfJl is, e. g., sup" E[) Ij{x) I , the natural norm in 
F([), we have in the notation of (2.10) 

1Ij(1I* ,y*) - f(lI(n) ,yen) II ~ c 1(11*, y*) - (lI(n) ,y(n» I 
= O(En+1 ) (4.2) 

for times in the appropriate range of order liE. 

V. TIME EVOLUTION AND SUPEROPERATORS 

The equations of motion (2.8) determine the evolution 
of the transformed phase function fR' The motion clearly 
has the nature of an oscillation with a superimposed 
drift taking place on a time scale longer by a factor liE 
than that of the oscillation. From the point of view of 
the Brussels formalism this is an example of a motion 
decomposable into "separate subdynamics" for the co
herent and oscillatory parts. This can be seen by the 
explicit consideration of the superoperator n of (2.16) 
which effects this decomposition. Using the notation of 
(2 . 7) one obtains 

[nf](lI,y) =- d9(J]{N(9, Z(II, y», Y(9, Z (II, y»}, l£T 
T 0 

(5.1) 

which shows clearly that nf evolves on the slow time 
scale only. This evolution of phase functions in the n 
subspace is an exact projection of the motion described 
by (2.6) and it is meaningful under the same conditions 
as (2.8). That the motion in the n subspace is in fact a 
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separate subdynamics follows from the commutation of 
II with the Liouville operator L: 

V(Lll - llL)V-1/=VLV-1p/- PVLV-1/ 

= - i (1 +EW) oOcp +Eh· ;z) Pf 

. ( a a) +zP (1+EW)ocp +Eh· oz f 

=0, (5.2) 

where we have used (2.16) and (2.8). If we denote by 
2;(t) the time-evolution operator in the II subspace, it 
follows from (5.1) and (5.2) that 

'E(t) = exp(- iLt)n = II exp(- iLl). (5.3) 

Following the arguments of Ref. 5 the usual operators 
of the Brussels school may be obtained by splitting II 
into four components as follows: 

A= PllP, CA=QllP, 

AD=PllQ, CAD=QllP, (5.4) 

where the operators C and D are well defined when A-1 

exists. The operator C, of great importance in the 
theory of Prigogine, can be defined in the standard de
velopment of that theory by the equation 

-QLQC +CPLQC +CPLP =QLP (5.5) 

(see Ref. 2 where, however, PLP has been taken to be 
zero). 

But starting from the C defined by (5.4), we have 

CPLQCA +CPLPA=CPLQllP +CPLPllP 

=CPLllP=CPllLP=C(A +AD)LP 

=QllPLP+QllQLP=QllLP=QLllP 

=QLQllP +QLPllP 

=QLQCA +QLPA. 

A comparison with (5.5) demonstrates that the C obtained 
from (5.4) is identical to that of the usual approach. The 
operator D can be treated in a similar way, and we al
ready know from its definition (2.15) that II and hence A 
are the same operators as occur in the usual approach. 

At this point, it is usual to introduce the operators X 
and xt acting on the P-subspace and defined by the two 
relations 

(5.6) 

It is possible to obtain these superoperators simply in 
terms of V and in fact we now prove that the choice 

(5.7) 

satisfies the defining equations (5.6). The first equation 
is trivial 

xxt = PV-1pVP = pnp=A. 
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For the second we note that 

PV= PVP + pVQ =xt +X-1XPVQ 

=xt +X-1pV-1PVQ=Xt +X-1PllQ 

=xt +X-1AD =xt(1 + D). 

Similarly, 

V-1p=(1 +C)X· 

But the Mandel-Turner equation (2.17) is 

O(PV) =PVoll 
oE oE 

and post-multiplication of this by P gives at once 

oxt =Xt(1 +D)..£..(llP)=Xt (1 +D)~ (A+CA) 
OE oE vE 

= t oA + to-:Z- (CA) X OE X dE' 

which is the second equation of (5.6). 

Next, we decompose the operator 2;(t) in a way 
analogous to (5.4) as1 

(5.8) 

(5.9) 

P'E(t)p =exp(- iOzpt)A, Q 'E(t)p =C exp(- iOzpt)A, 

P'E(t)Q =exp(- i01/!t)AD, Q'E(t)Q =C exp(- iOzpt)AD, 

in which for simplicity of comparison we have re
stricted ourselves to the case PLP =0. It follows at 
once that 

GzpA=PLllP=PLQllP. (5.10) 

In the usual form of the theory, this operator can be 
defined from the relation2 

Gzp=PLQC, 

which is an immediate consequence of (5.10). 

Finally, for use in the next section, we make two 
more remarks. The basic collision operator l/! of the 
theory is usually defined by the perturbation series1 

where the "matrix-element" notation means, for 
example, 

(n' L' m) =.!. r exp(- 27TinO'/T)L exp(7TimO'/T) dO'. rJo 
Likewise one defines the "creation" and "destruction" 

operators C and j) as follows: 

C=lim1n16 (~L QEL1)rlo\ ='EEt:"~·), ~ +iO\' r:;l Z - 0 / 5=1 
(5.12) 

j) = lim 1016 (EL Q_
1
_) rln) =6ESj)<S). 

n ~+~o \ r=l 1 Z - La 5=1" 
(5.13) 

In the further perturbational development of the theory, 
the operators C and D that we have used earlier, are 
defined, 1b.11 not by the difficult nonlinear equation 
(5.5), but by a series involving C ,j), l/J, and the deriva
tives, evaluated at z = +iO, of the z -dependent expres-
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sions in the defining equations (5.11)-(5.13). These are 
the definitions of C and D employed in Turner's solu
tion4 of the Mandel-Turner equation in the form (5.6), 
which is 

(5.14) 

with 

CPO =q/(p +q), Cpors = - sp/(P + q)(P +q +r + s), etc. 

The derivative operators mentioned above appear for 
the first time at fourth order in € in the development 
(5.14), and in the particular calculation in Sec. 6, they 
in fact give a zero contribution at this order, so that 
only the simple operators C and.o appear explicitly. At 
higher orders, more complicated terms may well 
contribute . 

VI. CALCULATION OF THE INVARIANT: 
A COMPARISON OF METHODS 

From the foregoing results we know that Hamiltonian 
systems of the type (3.1) possess an (asymptotic) in
variant J. It is often useful to calculate an explicit ex
pression for this in terms of the original variables 
et,I,q,p and there exists a variety of methods for doing 
this. One may follow Kruskal's method7 for determining 
"nice" coordinates in terms of which J is an action 
integral or, equivalently, solve the generating function 
equation for "nice" canonical variables as is done in 
Sec. 3. These two methods are systematic but involve 
tedious calculation since the expression for J at any 
order involves information about the other "nice" 
variables at lower orders. A more direct method (see 
below) was proposed by McNamara and Whiteman8 who 
showed that their method was equivalent to that of 
Kruskal. Finally, a method for calculating invariants 
has been developed by the Brussels schOOP4,15 using the 
operators of their formalism of statistical mechanics. 
Since we know, from the above, the correspondance be
tween the methods of Kruskal and Prigogine we can now 
link all these methods. In particular, we show below that 
the methods of Ref. 8 and those of the Brussels group 
are equivalent, and that the latter removes some diffi
culties which rendered the former unsystematic. 

We begin by considering the method of McNamara and 
Whiteman8 as applied to Hamiltonians of the form (3.1). 
This proceeds by solving, in a perturbation scheme, the 
equation for the invariant 

One introduces two operations defined on functions f 
which are periodic in a (period T) by 

- l{T A fa -
I="T 0 Ida, 1= if-/)det, (6.2) 
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in terms of which the equations to be solved become 

~ J(n) = [J(n-l) ,0] + G <n) , (6.3) 

[J(n-l) ,0] =0. (6.4) 

The authors develop a calculus for manipulating the 
"bar" and "hat" operations with the bracket [,] of (6.1) 
and use of this enables them to produce a solution for J 
which, in the special case 0" =0, can be made explicit to 
fourth order in €. At higher orders the method becomes 
prohibitively complicated. 

The methods of the Brussels school have already been 
outlined in the preceding sections and here we require 
in particular the Liouville operator L, the projectors P 
and Q of Sec. 2, and the operators 1/1, C, D, and X of 
(5.11) through (5.14). We also require the result, shown 
by various authors, 1,14,15 that starting from an invariant 
J(O) of Ho which satisfies 

(6.5) 

one can construct an invariant of H by 

(6.6) 

and conversely an invariant Jsatisfies (6.5) and (6.6). 

We turn now to the connection between these two 
formalisms and construct a dictionary for translating 
from one to the other. First we notice that the "bar" 
operation of (6.2) is exactly the projector P of Sec. 2, 
and that the bracket operation with 0 found in (6.3), 
(6.4) is essentially the action of L1, the perturbation in 
the Liouville operator. Next, if we decompose a phase 
function I 

1=1 +~ exp(21Tina /T)/n(I,q,p) = P/+Qf, 

we obtain 

1 '" 1 -L-Qf=L.J 2 I exp(21Tinet/T)fn' 
z- 0 n'OZ- 1Tn T 

There is no difficulty in taking Z - + iO in this to yield 

~L Q/=6 2- T exp(21Tina/T)fn =- if'" da~ exp(21Tina/T)f" 
- 0 ""0 1Tn "*0 

=-ijada{f-f>' (6.7) 

We also have P(1/z - Lo)Q/=O, so that the constant of 
integration in (6.7) must be chosen so that pjadaif-f> 
=0. Comparison with the definitions of Ref. 8 now give 

P/=f, LJ=i[j,O], (1/-Lo)Q/=-ij (6.8) 

which is the required dictionary. As an example of its 
use one may verify from (5.11) that 

1/I(2)f= PL1 ~L QL1Pf=i[[l,O],0] 
- 0 

i [-A- -=-2" [0,0],1] (6.9) 

which shows that, for the systems considered here, 1/1 
is not identically zero, contrary to the cases looked at 
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in Refs. 3, 5, and 6. 

We now proceed to the explicit construction of J and 
first determine the particular choice of JCO) to be used 
in (6.5) and (6.6). Letj be the function in F(f)) (suitably 
truncated if need be) defined by 

[9 ](13,J,Q, p) =J. (6.10) 

Thenj = pj and J = [Y-1j](0' ,I, q,p) so that J as a func
tion of 0' ,I ,q,p is just y-1Pj. But from (5.9) we see 
that 

J(O',I,q,p) = [x..9 +~exp(21TinO'/T)Cnx..9J (O',I,q,p) 

= Xl + 6 exp(21TinO'/T)CnXI, (6.11) 
n*o 

where the operators X and C are given their realization 
in the variables O',I,q,p. A comparison of (6.3)-(6.6) 
and 6.11 entitles us to make the following two 
assertions. 

(i) The function Xl is essentially the function G of 
(6.3) and it satisfies Eq. (6.5) 

(PLP +1/J)xI= 0 (6.12) 

which is exactly condition (6.4) of McNamara and 
Whiteman. 

(ii) In view of 6.12 the action of Cn in 6.11 reduces to 
[n and the angle-dependent part of the invariant can be 
constructed with the operator [ to obtain the complete 
invariant in the form (6.6), which is exactly condition . 
(6.3). 

More explicitly, we now calculate the first few orders 
and begin by showing 

GCn)=_XCrt+1)I. (6.13) 

From the expression (5.14) for X-I we have, using our 
"dictionary" 

xCO)I=I, X(1)I=O, 

x(2 )I=- lO (1)[C1)1=_ ~PL1-1-Q-1_L1PI 
- Lo - Lo 

1 1 - i A 
= - 2"PL1 _ Lo Q(n - n) =2" PLlu 

=- ~p[!l,n] = - MO,n]. 

(6.14) 

(6.15) 

In a similar way, after a certain amount of manipulation 

X(3 ) 1= - if) (2)( (1) I _ to (1)( (2) I 

= - t[o, [0 ,n]] - 1[0, [o,n]]. (6.16) 

Results (6.14)-(6.16) are identical to those of Ref. B. 

When n=o we have the result 

((1)I=n(_1- L )0 I=Q [c')I=O 8>1 
n _ Lo 1 n' n , , 

(6.17) 

which enables us to calculate the fourth order term (in 
the case Q =0) as 

X(4) 1= - W (3)[ (1) I +tf) (1)[ (1)f) (1)( (1) I. 
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After use of (6. B) and rather extensive rearrangement 
this is seen to be identical to the _G (3

) of Ref. B. 

Knowing the angle-independent parts GCn), one may 
construct the complete invariant using (6.3), that is 

=0En(_1_QL J(n-1 ) +Gcn») 
n=O - Lo 1 

=:0 En(GCn) +(C1)GCn-1) + ... +[Cn)l) 
n=O 

= (1 +()6 EnGCn) 
n=O 

which shows that (6.3) is exactly (6.6). 

Thus we have shown that use of 6. 6 with J CO
) == Xl 

allows a systematic order-by-order calculation of the 
invariant. This calculation is equivalent to the method 
of McNamara and Whiteman but has the great advantage 
that, since X is known to all orders in E, one may cal
culate by a completely determined procedure to any 
desired order. 

VII. CONCLUSIONS 

We have seen that for the Simplest systems to which 
the averaging method is applicable there exists one and 
only one of Kruskal's transformation which satisfies the 
Mandel-Turner equation. This furnishes us with a 
simple mechanical example exhibiting some features of 
the general scheme of the Brussels group, in particular 
the notion of subdynamics. Of course, owing to the 
extreme Simplicity of the case there is here no question 
of thermodynamic behavior but merely a clear separa
tion of mechanical motions. One is tempted to general
ize by complicating the model, for example, by starting 
from (3.2) without such strong assumptions on the fre
quencies. It seems to the authors that, on the formal 
level, most of the content of this paper could be ex
tended in a straightforward way but that great difficul
ties will arise in any attempt to justify the formal series 
as asymptotic series (cf. the well-known difficulties of 
the averaging method for many degrees of freedom12). 
Finally, we comment on the fact that in the usual de
velopment of the Brussels schemel the transformations 
considered are seen to include but be more general than 
canonical transformations. This feature does not show 
up in our very simple case. We could of course ex
amine systems which evolve according to a Liouville 
equation not derivable from a Hamiltonian and then 
there would be no question of canonical transformations. 
However, it is interesting that even for Hamiltonian 
systems, if they have more than one rapidly oscillating 
variable, the "nice" transformations cannot always be 
made canonical and, in fact, the conditions for this de
pend on delicate considerations of degeneracy which 
have not yet been completely resolved .16,17,18 In these 
cases it may still prove possible to establish a connec
tion with the superoperator transformation theory by a 
method not dependent on canonical transformations at 
the intermediate stage. 



                                                                                                                                    

1714 J. Rae and R. Davidson: A comparison of two transformation theories 1714 

ACKNOWLEDGMENTS 

The authors wish to thank Professor I. Prigogine and 
Drs. J. Wm. Turner, P. Mandel, and A.P. Grecos for 
their assistance during the course of this work. 

*Present address: The University of British Columbia, Vancouver, 
Canada. 

II. Prigogine, et aL (a) Proc. Natl. Acad. Sci. USA 65, 789 (1970), (b) 
Proc. Nat!. Acad. Sci. USA 66, 709 (1970). 

21. Prigogine, et 01., Physica (Utr.) 45, 418 (1969). 
3p. Mandel, Physica (Utr.) 50, 77 (1970). 
4J. W. Turner, Physica (Utr.) 51, 351 (1971). 
5J. Rae and R. Davidson, J. Stat. Phys. 3, 135 (1971). 

J. M"th. Phys., Vol. 14, No. 11, November 1973 

61. Prigogine, C1. George, and 1. Rae, Physica 56, 25 (1971). 
7M. Kruskal, J. Math. Phys. 3, 806 (1962). 
8B. McNamara, and K. J. Whiteman, J. Math. Phys. 8, 2029 (1967). 
91. Prigogine, Topics in Non-Linear Physics, Proceedings of International 

School of Non-Linear Math. and Phys. Munich 1966 (Springer, New 
York, 1968). 

lOp. Mandel, Physica (Utr.) 48, 397 (1970). 
IICI. George, Bull. Acad. Roy. Belg. CI. Sci. 53,623 (1967). 
12V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics 

(Benjamin, New York, 1968). 
131. Moser, Mem. Amer. Math. Soc. 81, I (1968). 
14R. Balescu et 01., Bull. Acad. Roy. Belg. 0. Sci. 55,1055 (1969). 
15A. P. Grecos, Physica (Utr.) 57, 50 (1971). 
16-f. P. Coffey, J. Math. Phys. 10,426 (1969). 
17M. Kummer, 1. Math. Phys. 12,4(1971). 
lIT. P. Coffey and G. W. Ford, J. Math. Phys. 10, 998 (1969). 



                                                                                                                                    

Simplex transformations of the spin-1 /2 Ising model. I 
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The problems of developing power series expansions for the thermodynamic functions of the 
spin-I 12 Ising model are discussed. The basis of the discussion is a generalized Ising-type model 
which incorporates collective potentials between special groups of k particles on the lattice sites. The 
addition of these k -body potential functions throws a new light onto the problems of developing 
series expansions for the conventional spin-I 12 Ising model. A system of transformation equations 
connecting the high and low temperature series developments of the model is obtained which 
contains the well-known high-low transformation of the Ising model. It is likely that this generalized 
transformation will provide a useful additional technique in the theory of the conventional Ising 
model, as well as providing a basis for the discussion of other lattice models which exhibit critical 
phenomena. 

I. INTRODUCTION 

This paper is about the problems which are encoun
tered in forming exact power series expanSions for the 
thermodynamic functions of an ISing model system. In 
recent years these expansions have been studied in great 
detail. Many of the principle references and a general 
lead into the subject can be found in reviews by Domb1 

and by Fisher. 2 Our discussion throughout will be re
stricted to the special case of the spin-~ ISing model, 
however, throughout the literature formal generaliza
tions of much of the theory can be found, and applied to 
the contents of this paper. 

There are two prinCiple forms of a series expansion 
development of the Ising model thermodynamic functions; 
these are, (a) high temperature expanSions valid in re
gions T> T e' where T e is the critical temperature, and 
(b) low temperature expansions in regions T< Te' 

An immense amount of data is available in the litera
ture for both types (a) and (b). This data is the principle 
source of our present knowledge concerning the critical 
point behavior of a variety of transition phenomena, 
which can be represented in terms of some type of Ising 
model defined on a regular lattice L q' where q denotes 
the degree of each vertex in the lattice. The evaluation 
of successive terms in (a) and (b) can be related to the 
enumeration and counting of sets of subgraphs in Lq; in 
this much ingenuity has been devised to reduce to an ac
ceptable minimum the amount of direct enumeration 
necessary in determining a given set of subgraphs which 
contribute to the terms in (a) and (b). The most success
ful of these techniques has been centered on the series 
in (b). 

The first such special technique was devised by 
Domb,3 and is a transformation equation which relates 
the two forms of expansion (a) and (b). This transforma
tion is known as the high temperature-low temperature 
(h-l) transformation. This transformation assumes the 
absence of any singularities in the canonical partition 
function in unlikely regions of the phase diagram corre
sponding to the model. The h-l transformation exploits 
some simple symmetry properties of the partition func
tion' which results in a reduction of the direct enumera
tion needed to develop the series (b). This technique has 
been successfully developed by a number of authors. 4-9 

A further reduction in effort was achieved by Sykes, 
Essam, and Gaunt, 7 who devised a technique known as 
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the method of partial generating functions, which was 
originally applied to lattices which are divisible into two 
interpenetrating sublattices. Basically this method ex
ploits a symmetry relation between the (b) series devel
oped for the ISing model of a ferromagnet, and the cor
responding series for the antiferromagnet. Using this 
method these workers extended the series (b) for a va
riety of lattices. 

An alternative transformation relating the two forms 
(a) and (b) was proposed by Nagle, 8 who gave a more 
generalized treatment which included a variety of net
work models. This transformation known as the 'closed
weak' transformation does not so far seem to have been 
used in developing series expansions for the ISing 
model. 

The most recent work in the development of the (b) 
series is contained in a major series of calculations by 
Sykes and coworkers, 10,11 where the original method of 
partial generating functions has been developed and ex
tended to include all the common lattice structures. 

In this paper we introduce what we believe to be a new 
transformation between series of type (a) and (b) which 
contains much symmetry, and which we call the simplex 
transformation. This transformation is defined on a 
generalized set of Ising-like models which have an in
teresting mathematical and physical relation with the 
conventional spin-~ Ising model. We envisage an ex
tended Hamiltonian H Lq for lattice Lq of the form 

HLq =H1 +H2 +"'+Hn , (1) 

when H ~ in (1) is defined as a contribution to H Lq arising 
from groups of k sites in Lq. Thus the conventional ISing 
model Hamiltonian H[ is 

(2) 

where Hl is a single particle term (the magnetic field 
interaction with Lq for the magnetic Ising Model), and 
H2 is the contribution ariSing from the pair interactions. 
The clusters of k sites over which H k is defined are the 
k-point simplex sub graphs s. of L •. Thus sn is the 
largest simplex sub graph in L q , that is the (n + 1)-point 
simplex cannot be embedded in L •. Thus for the two-di
mensional triangular lattice (q == 6) n == 3, and for the 
three-dimensional face centered cubic lattice (q= 12) 
n=4, where in both cases Lq is formed as a graph 
where only nearest neighbor points are connected. 

Copyright © 1973 American Institute of Physics 1715 
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The h-l transformation of Domb arises as a natural 
consequence of the groupings of graphs in the terms of 
(a) and (b). In the (b) series groups of graphs are formed 
which have the same number of points and lines, that is, 
the same number of S1 and S2 simplex subgraphs. This 
is a reproducible pattern in relation to the inclusion of 
other simplex clusters in Eq. (1), and in this way a new 
type of transformation is obtained which we call the sim
plex transformation, which throws an interesting light 
on the expansions (b). 

The plan of the paper is as follows. In Sec. IT the pro
totype expansions (a) and (b) for the spin-~ ISing model, 
and the h-l transformation are briefly reviewed. In 
Secs. m and N we describe the generalization of (a) and 
(b) which result from interaction Hamiltonians in the 
form of Eq. (1). In Sec. V we derive the new simplex 
transformation, which is illustrated with the specific 
example of the triangular lattice in Sec. VI. Finally, in 
Sec. VIT we illustrate a natural physical model based on 
Eq. (1), which is a model of a lattice fluid in which trip
let potential functions are included. 

II. THE HIGH TEMPERATURE-LOW 
TEMPERATURE TRANSFORMATION 

The form of the series expansions of the spin-~ ISing 
model partition function Z5, for a lattice Lq of N sites in 
which only the nearest neighbor pairs of sites in L. are 
connected is well known. Following the notation of 
Domb1 the expansions are summarized below. 

A. The high temperature hyperbolic tangent 
expansion 

We can write Z5, in the form 

Z1 = WNI2z·Nq /4AN(/J., z), 

where /J. = exp( - 2mB /kT) and z = exp( - 2J /kT). The 
function AN can be expanded in the form 

(3) 

AN(/J.,Z)=e;zt
q
/
2

(1+/J.)N(l + N~2~(r:j)vr'T"o), (4) 

where v = (1 - z)/(l + z) and 7"= (1-/J.)/(1 + /J.). In (4) the 
symbol r: j refers to a graph of r lines, and the index j 
serves to distinguish topological types. (r: j) denotes the 
number of weak embeddings12 of r:.i in L q , and rio is the 
number of vertices of the graph which are of odd degree, 
that is vertices at which an odd number of lines meet. 
Following Domb1 (see also Nagle9

) the expansion (4) can 
be rearranged as a power series in (1 - z), and we read
ily obtain the form 

A( ) 1 ~ CP(r)(/J.) (1 2)r 
/J., z = + /J. + L.J (1 + )2 -1 - Z , r=l Il r 

(5) 

where A(1l,z)=AN=l(/J.,Z), and CP(r)(Il) are symmetric 
polynomials of degree 2r. The symmetry of the polyno
mials is apparent from Eq. (4) since 

W1/2A(/J., z) = /J.l/2A(/J.-1, z), 

which follows directly from the observation that no is 
necessarily even. 

B. Low temperature expansions 

(6) 

By successively introducing perturbations on the 
ground state of the spin-~ Ising model in taking groups 
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of s lattice sites for which the site variables (]= -1, we 
can readily derive the following expansion 

N 

AN(Il,z)=1+66[k:s:r]u·q/2-r/J.', (U=Z2), (7) 
5=1 k 

where k: s : r denotes a sub graph of Lq containing s 
points, r lines [0 <S r <s ts(s + 1)] of topological type k. 
[k: r: s] is the number of strong embeddings12 of the 
graph in Lq. The terms in this expansion are commonly 
grouped so as to form the so-called high field expan
sion in which the high field polynomials are defined by 

(8) 

The h-l transformation is based upon the Eqs. (5) am 
(8) from which we readily derive the relations 

f
5
(1)=0, s> 1 (9) 

and 

f!P>(l) = coefficient of Il s in [(-l)Pp!cp(P)(Il)/(l + /J.)2H], 

(10) 

where f!P)(l) is the pth derivative of fs(u) evaluated at 
u = 1. The connecting equations (9) and (10) have been 
exploited by numerous workers4

-
9 in evaluating fs(u). 

III. GENERALIZED LOW TEMPERATURE 
SIMPLEX EXPANSIONS 

Returning now to the expansion (7), we can regard A 
as a generating function, the expansion of which gener
ates groups of strong embeddings of subgraphs in Lq; we 
see that in the coefficient of /J."u (1/2)q.-r we have 

coefficient of /J.·u U / 2)q5-r=6[k: r:s], 
k 

(11) 

where the sum on the right of (11) is the total number of 
strong embeddings (evaluated at N = 1) for subgraphs in 
Lq with s points and r lines. The sums in (11) are pre
cisely what we need in the derivation of the high field 
polynomials fs(z). Thus for s = 10 on the triangular lat
tice r can take the values 0, 1,2, ... , 19 giving 20 such 
sums. Of course in the evaluation of fs(z) we need only 
determine the sums in (11) which contribute to fs(z), and 
it is this which is exploited using the connecting equa
tions (9) and (10). 

Given that the Ising model problem leads naturally to 
a partitioning of the strong embeddings of all the sub
graphs in L q , whereby the graphs in each element of the 
partition contain the same number of points and lines, 
one can seek alternative partitions of the same set of 
strong embeddings. For any graph k: s : r the point and 
the line are both subgraphs of k: s: r, consequently the 
grouping represented by Eq. (11) groups these graphs in 
Lq with the same number of point and line subgraphs. It 
is natural to ask if we can extend this type of grouping 
whereby additional sub graphs of k: s : r are identified 
thus yielding a different partition of the total set of 
graphs in Lq in which a larger number of groups of 
graphs in Lq are partitioned. We require to know what 
type of subgraphs of k: s : r can be incorporated into ex
pansions of the type in Eq. (7). 

Suppose we select a sub graph g, then we seek a mean-
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ingful e}"-pansion of the form 
~ 

A(/-L, u, w) = ~[k: S : r: n,lu (1/2)s.-rwY(n,) /-L', (12) 
0=0 

where the variable w is some additional variable in the 
generating function, related to the graphs gin L., and 
k: s: r: n, is the strong embedding lattice constant (N = 1) 
of a graph of S points, r lines, and n, subgraphs g. Now 
we shall require to impose a constraint on g in that 

(13) 

which is a statement to the effect that the exponent y(n g) 

of w in Eq. (12) must be independent of the various 
space types13 of the strong embeddings in L. of the graph 
k: s: r: ng• Equation (13) represents a very strong con
dition on the possible graphs for g, and in fact restricts 
g to be a simplex graph. We will denote the .i-point sim
plex graph by sr Clearly, the conventional Ising model 
expansions in Eq. (7) are graph generating functions in 
which information is carried relating to the Sl and S2 

subgraphs of the graphs contributing to the expansion. 

Consider now a lattice L. such that Su S2' ••• , sn E L., 
and let the variables associated with these simplex 
groups of sites be /-L, ul> U2, •• " and un_U respectively; 
then the generalized form of Eq. (12) for this lattice 
will be 

where k: n'
l 

: n. : ••• : nOn is a subgraph of L. containing 
n

ol
-points, n

S2 
-fines, .. " and nOn n-point simplex sub

graphs. The nature of the original Ising model, and the 
lattice L. determines the maximum n for which SnE L •. 
Thus the triangular lattice with nearest neighbor inter
actions contains Sl' S2' and S3 simplexes; however, if 
next nearest neighbor interactions are included the S4 

simplex can be added to this list, and the face centered 
cubic lattice with only nearest neighbor interactions 
present contains simplexes up to S4' 

We next have to obtain the exponent functions 
y j-l (nou n S2 , ••• ,no J) in Eq. (14). These can be readily 
obtained in the usual way (see Domb l ); thus, if t}1 (i 'f j) 
is the number of simplexes S j sharing a common sim
plex S I in L., we find 

Y j-l =!t JlnOl - t }2nS2 + 2t j3nS3 - 4t J4n04 + ... 
+ (_1)}+12}-2t }}nS}' (15) 

where following the usual practice the exponents are re
duced to the smallest integer form in that if -J/-l rep
resents some collective i -site potential in the ground 
state of (1), then uj-l = exp( - 4Jj-l/kT). The high field 
groupings of Eq. (14) corresponding to Eq. (8) now be
come high field polynomials in'l (uu ... ,Un_i) defined by 

(16) 

and the relation corresponding to Eq. (11) becomes co-
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efficient of 

{ " "SlU'Yl (nS1 ' ".s2)U"2(nSl ' ""2' "S3)... u*fn-! (n&1t "&2'···' n.sn'} 
.... 1 2 , n-l 

L:[k: n.l : n 02 : ••• : nsn]' (17) 
k 

The sum in (17) is the total number of strong embed
dings (N = 1) of all the subgraphs of L. which possess 
nsl -points, n.2-lines,···, and nOn simplexes sn' There 
will of course be more sums of the type (17) in i nSl than 
there are sums of the type in Eq. (11) in the corre", 
sponding is. Essentially, each term in Is is split up into 
a partition of graphs each containing the same number of 
S3' S4' • ", and Sn simplex subgraphs. 

IV. GENERALIZED HIGH TEMPERATURE 
SIMPLEX EXPANSIONS 

We now seek the generalization of Eq. (4) which cor
responds to the generalized low temperature simplex 
expansion of Eq. (14). The form of the expansion (14) 
was derived on the basis of including a term 
J j _l ~ (]i

l
(]12'" (]Ij in Eq. (1), where each product of 

SjEL • 

.i-site variables is defined over the .i-point simplexes 
S j E L •. We can readily incorporate this feature in a 
general development analogous to Eq. (4) for a lattice 
L. such that Su S2' ••• ,sn E L., and the resulting expan
sion is (see also Sec. VII) 

AN(/-L, Zu Z2' .•• ,Zn-l) 

= C~2H(1 + Zi-l»NP(Si»(1 + /-L)N 

x (1 + L: L: .•• L: ~ (j : n S2 : nS3 : ••• : n sn ) 
".$2=1 "S3=1 ".$71=1 i 

X VnS2VnS3 ••• VnonTn~ (Z~ = U ) 
1 2 n-l J' • I' 

(i8) 

This expansion requires some clarification in that the 
graphical interpretation is considerably different from 
that in Eq. (4). In Eq. (18) VI = tanh (J/kT) = (1- ZI)/ 
(1 + ZI)' i = 1,2, ... ,n -1, and P(SI) is the lattice con
stant for weak embeddings of S i E L.. The graph 
j: n S2 : nS3: ••• : nSn is a graph made up of n S2 - S2 sim
plexes, nS3 - S3 simplexes, ... , and nSn - sn simplexes 
but any simplex SI_l in this graph is not itself a sub graph 
of any of the simplexes s/' SI+U ••• ,Sn which may also be 
contained in the graph. Again the index j in (18) serves 
to distinguish topological types. The way in which the 
graphs in (18) are defined means that in a diagrammatic 
representation of a graph each of the SimpliCial com
plexes must be clearly distinguished. Finally 
(j: n S2 : nS3 : ••• n'n) is again the number of weak embed
dings of the graph in L •. 

To illustrate the graphs in Eq. (18) consider any lat
tice such that S3 E L., then the graphs contributing to the 
term V 1V 2 are shown in Fig. 1 together with their re
spective contributions to the coefficient, where the 
shaded triangles correspond to the S3 simplexes and the 
lines to the S2 simplexes. In Eq. (18) no is again the 
number of odd degree vertices in the graphs; however, 
we must redefine our notion of the degree of a vertex. 
Any single SjE L. covering the lattice sites iu ... ,i} in
troduces the product of site variables (]ll(]i2' •• (]ij only 
once in the expansion, and consequently we can define 
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FIG. 1. The contributions of the graphs contributing to tbe co
efficient OfvjV2 in Eq. (18). 

the degree of a vertex in any graph as the total number 
of simplexes sharing this particular vertex. Thus for 
the graph (a) in Fig. 2, which is made up of 52 and 53 

simplexes the degrees of the vertices a, b, c, d, e,j, and 
gare 1,3,3,2,1,1, and 2, respectively. This graph 
would contribute a term in T5 to the coefficient of v~v~ 
in Eq. (18). In the case of the three-dimensional face 
centered cubic lattice 54 simplexes can occur, and this 
necessitates a clear distinction between the triangles 
and the tetrahedra. For this lattice the graph (b) in Fig. 
2 is an example of a graph made up of one 52 simplex, 
one S3 simplex, and one S4 simplex which contributes a 
term in T3 to the coefficient of V1V 2V 3• A more detailed 
discussion of the expansion in Eq. 18 is included in Sec. 
VII where the expansion is developed with reference to a 
model of a lattice fluid. 

V. THE HIGH TEMPERATURE-LOW 
TEMPERATURE SIMPLEX TRANSFORMATION 

starting from the simplex expansion of Eqs. (14) and 
(18) it should be possible to set up a transformation 
corresponding to Eqs. (9) and (10) relative to the same 
assumptions as made by Domb. 3 We consider a lattice 
Lq such that S1' S2, ••• , Sn E Lq and define two index sets 
J and K to be the set of odd and even integers, respec
tively, from the integers 2,3,4, ... , n. We readily ob
serve that for any graph j: nS1 : n S2 : ••• : nsn in Eq. (18) 
(0 no is odd if ~ns i' j E J is odd, and (ii) no is even if 
~nsJ' iE J is even. 

From (0 and (ii) the following form of Eq. (18) imme
diately commends itself: 

A(J-L, zl> ... , Zn_1) == C~JH1 + Zi_1) ]P(SI ~(1 + J-L) 

X[1 + t V~'3 t v:S 5 •• • (6 (j: nS2 : ••• : nsn) 
nS3=1 nS5=1 \"s i JEK 

(19) 

where the final sum in Eq. (19) extends over all possi
ble sets {ns j : j E K} for a fixed set {nSj : j E J}. Clearly 
only odd powers of T occur in this sum if the sum of the 
members of the fixed set {ns J: j E J} is odd, otherwise 
the sum contains only even powers of T. 

It will be convenient to define a sequence of partial 
partition functions Alns !: jEJ)(J-L, zl> Z3" •• ) by 

which defines one such partial partition function for each 
set {noJ : j E J}. It follows from (i) and (ii) that the partial 
partition functions satisfy the following symmetry 
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relations 

Alns :jE".Tj(J-L)=-Alno ,:JEJj(W1
), if ~n'i:jEJis odd, 

i 1 

(21) 

and 

A ln' i JE'J) (J-L) == Alns}, JE'J(W
1
), if ~n. J : j E J is even. 

We can now write Eq. (19) in the form 

A==( 11 (1+v_1)-p(·n) 6 (1+J-L) 11 [t(1+z,_ )]P('j) 
iEJ I )ns/ FJ' iE'K .1 

xA . ) 11 vnSI
• In. J' JEJ) IE J 1-1 (22) 

We can transform the expression in parentheSis in the 
sum of Eq. (22) in the usual way to obtain a form corre
sponding to Eq. (5), which is 

A== (,11 (1 +v )-p(sn) 6 ( ~ cP In.}' JEJ+K) (J-L) 
fEJ l-1 nSj:jE'J ns/iEK (1 + J-L)I:jJnsJ-1 

(23) 

where a polynomial CP{n. :JEJ+K)(J-L) is defined for each set 
of integers nSj' j= 2,3, .J • • , n. These polynomials are of 
maximum degree ~JjnsJ and have the following symmetry 
properties resulting from Eqs. (21): 

and 

cP Ins l' jE"J+K) (J-L -1) = - J-L -I:JJns JCP I n. J' JE'J +K)(J-L), 

if ~n. J : .i E J is odd, 

cP Ins J' jEJ+K) (J-L -1) = J-L -I:JJn. JCP In.J' jEJ +K) (J-L), 

if ~n.,: jE J is even. 
1 ' 

(24) 

To obtain the expansion in Eq. (23) we have split the 
original expansion of Eq. (18) into two parts each of 
which satisfies a symmetric or anti symmetric relation 
in the context of Eqs. (21). It is quite feasible to deduce 
other forms of A, but generally much is to be gained 
from a form which can be defined on a symmetric set of 
polynomials. The symmetry of the polynomials CP(r)(J-L) 
in Eq. (5) plays a vital role in applying the relations (9) 
and (10) to the derivation of the high field polynomials. 

We now proceed by expressing Eq. (16) in the form 

which is simply a matter of making the substitution Z j 

= (1 - v J) /(1 + v J) for (j + 1) E J, whence we can formally 
equate Eqs. (25) and (23). The expanSion of Eq. (23) 

.~b~. ~ 
9 f ~~ 

(a) (b) 

FIG. 2. The graphs (a) and (b) contribute to the coefficients of 
vfv~ and VjV2v3. respectively. in the expanSion of Eq. (18). 
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FIG. 3. The exponents of ~ are equal to one half of the number 
of negative triangles which determines the variable u2 for which 
the exponents will be integers. 

yields the relation 

A(tL,l,O,l,O, ···)=l+tL 

and hence 

cI>.s(l,O,l,O, ···)=0, n'1~2. 
1 

(26) 

(27) 

On differentiating Eq. (26) 11 times with respect to U 1, 

12 times with respect to V2, ••• , and 1.-1 times with re
spect to V.-1 or U.-1 depending on whether n is odd or 
even, respectively, we obtain 

(I j) 

= 6 A )<p (tL)/ 
kJ:jEK (kj !/t. k 2. 13. k4 ... ·) 

(1+tL)21t+6 (j+1)lj+ 6 (j+1)kJ -1 (28) 
JE J jEK 

where the constants A(k') are easily determined, and 
which yields the relatiohs 

cl>J!lo '2.·· .1.-1 )(1,0,1,0, ... ) = coefficient of tL "1 in 
1 

(I j) 

kj:2i=-KA(k j) <P <11 • k 2.1 3 • k4 .... )(tL) / 

(1+tL)21 1 + 6 (j+1)lj+ 6 (j+1)k,-1 (29) 
,EJ jEK 

which are the generalizations of the relations in Eq. 
(10), which we call the simplex transformation. 

We notice that both f.(u) in Eq. (8) and cI> .(zu V 2 , ••• ) 

in Eq. (25) are defined on identical sets of strong em
beddings in L., that is, the same total set of graphs 
contribute to both functions; however, in cl>s we have a 
different partition of these graphs whereby we identify 
a larger number of groups in the total set of graphs. 
For a lattice L. which contains simplexes beyond S2 Eq. 
(29) yields many more connecting equations on the total 
set of graphs which contribute to fs; however, the larger 
number of groupings in cI>. necessitates more connecting 
equations if the contributions from the individual group
ings are to be determined. It seems to us that the sim
plex transformation of Eq. (29) may represent an addi
tional and very useful technique in determining low tem
perature expansions for a number of ISing model 
problems. 

VI. THE APPLICATION OF THE SIMPLEX 
TRANSFORMATION TO THE TRIANGULAR 
LATTICE 

We now illustrate the simplex transformation of Eq. 
(29) with a specific example in which we take L. to be 

J. Math. Phys .• Vol. 14. No. 11. November 1973 

1719 

the two-dimensional triangular lattice in which only 
nearest neighbor sites are connected. The lattice is 
shown in Fig. (3), and contains the S3 simplex. For the 
graphs contributing to the expansion of Eq. (14) we will 
use the notation k: s : r : t to denote a graph of type k 
containing s points, r lines, and t triangles. From Eq. 
(15) we find 

')'2=3s -2r+2t 

and we can write 

(30) 

(31) 

The expansion variable u2 carries the information re
lating to the number of triangles contained as subgraphs 
of k: s: r: t. The value of the exponent given by Eq. (30) 
is illustrated in Fig. 3 where the number of triangles 
containing a negative sign determines the index 1'2; the 
four graphs shown in Fig. 3 are sufficient to illustrate 
the general case. In Eq. (15) t3U t 32 , and t33 are, re
spectively, the number of triangles sharing a common 
pOint, a common line, and a common triangle, and are 
6,2, and 1, respectively. 

The first four polynomials f.(uu u 2) are shown in dia
grammatic form in Fig. 4. 

The grouping of the contributions to f4 shown in Fig. 4 
corresponds to the general grouping of Eq. (17); graphs 
forming the coefficient of ul."u~ are collected together, 
thus f4 contains seven such groups, whereas in the 
grouping of the scheme in Eq. (11) the polynomial con
tains six groups. In general the number of groupings in 
the form of Eq. (17) must be determined by an examina
tion of the lattice. In the case of the triangular lattice 
we illustrate the groupings that will occur in fa or f7 by 
constructing the grids shown in Fig. (5). The numbers 
m in the top row of the grids represent possible terms 
in ul.", and the columns denote terms in u~. The entries 
(t, r) in the grid represent graphs that can occur con
taining t triangles and r lines; consequently, in fa and f7 
there are 17, and 25 groupings, respectively, in the 
scheme of Eq. (17). 

In this case the polynomials <P (r. n(tL) for the triangu
lar lattice, which appear in Eq. (23) are symmetric if t 
is even and antisymmetric if t is odd. Furthermore, the 
polynomials contain no term independent of tL, and 
therefore the maximum degree of <P (r f) is 2r + 3t - 1, 
giving a maximum number r + [~t] of independent coeffi
cients in the polynomial, where [ 1 denotes the integer 

• C A .• Ju~u~.{c--<J'c NJ1U~u~.cA"JU~U~ 

• c tzl J u; u~ 

FIG. 4. The first four polynomials of Eq. (16) for the triangle 
lattice. 
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~ 18 17 16 15 14 13 12 11 10 9 

18 (QO 

16 0,1) 

14 (Q2) (1,3) 

12 Q3} (\4) (2,5) 

10 Q4) (\5) (2,6) 3,7) 

8 (0,5) (1,6) (2,7) (3,8) '1+,9) 

6 0,6) 

~ 21 20 19 18 17 16 15 14 13 12 11 10 9 

21 (0,0) 

19 (Q1) 

17 (Q2) (1,3) 

15 (0,3) (\4) (2,5) 

13 (Q4) (1,5) a,6 (3.7) 

11 (05) (1,6) (2,7) (3,8l '1+,9) 

9 (0,6) (1,7) a,8 (3,9) ~,YJ) (S,n) (6,0 

7 0,7 0,8) 

FIG. 5. The grouping of graphs contributing to fs(ut, u2) and 
f7(ut,~) for the triangular lattice in the scheme of Eq. (17). 

part of. Given the polynomials fl (uu u 2), ••• ,fs(uu u 2) 

(see Ref. 7), we can use Eq. (29) to determine the poly
nomials cf> (T, t>(Il) for which r + [~t] ~ 5, which gives rise 
to the following set for (r, t): 

(r, t) = (5, 0)(4, 0)(3, 0)(2, 0)(1, 0)(0, 0) 

(4,1)(3,1)(2,1)(1, 1)(0, 1) 

(2,2)(1,2)(0,2) 

(1,3)(0,3). 

(32) 

Thus to evaluate fa(uu u 2) we have 16 connecting equa
tions for the 17 groupings shown in Fig. 5; consequent
ly, we need only obtain the data for one of the entries in 
the grid to establish fa' The simplest entry is (0,6) 
which contains only one graph which is a hexagon of 
sites, and which has a strong embedding lattice constant 
of 1. Following the determination of fs' we can extend 
the set in Eq. (32) by including 

(r, t) = (6, 0)(5,1)(3,2)(2,3) and (0,4), (33) 

thereby yielding 21 connecting equations for f7 leaving 
the data corresponding to 4 elements in the grid of Fig. 
5 to be determined. 

Once we have obtained f&(uu u2) we have obtained more 
configurational information about strong embeddings in 
L. than we have in the single variable case f&(u1). Alter
natively, if a given set of high field polynomials f s(u1 ) in 
Eq. (8) is known, we can use these to form additional 
connecting equations for the polynomials fs(uu u2), which 
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can be used to supplement the connecting equations ob
tained from Eq. (29). The number of additional connect
ing equations formed in this way is just the number of 
columns in the grid such as those shown in Fig. 5; since 
the entries in each grid must satisfy 

L:[k:s:r:t]=L:[k:s:r], r=0,1,2,···. (34) 
k, t k 

Recently Sykes and coworkersll have extended the 
series development of Eq. (8) for a variety of lattices. 
For the triangular lattice fl0(U1) has been obtained. The 
number of groupings of the type in Eq. (11) in this poly
nomial is 20, whereas the number of groupings in the 
scheme of Eq. (17) is 58. From the connecting equations 
(29) we can obtain 40 constraints on flO(UU u2). Thus we 
can supplement these constraints with any 18 of the set 
of Eqs. (34) providing a full complement of 58 equations 
to determine fl0(UU u 2). This procedure, which can be 
extended to other lattices, could also be used as a con
sistency check on the results of Sykes et al. ll by alter
ing the choice of constraints obtained from Eq. (34). 

VII. A LATTICE GAS WITH TRIPLET 
POTENTIALS 

Within the theory of classical fluids it has long been 
recognized that the N -particle potential function 
UN(!J.'!.2"" ,!.N) may not be expressed entirely in terms 
of additive pair potential functions. It has been suggested 
by several authors14- 18 that in order to obtain an accu
rate theory for the thermodynamiCS of simple fluids the 
potentials arising from three-body forces may have to 
be taken into account. The variety of network models 
that have been so successful in developing the theory of 
cooperative phenomena do not so far seem to have been 
extended with a view to including such triplet potentials. 
In our view such models would be well worth examining, 
particularly in the critical region. 

To incorporate triplet potentials in a model of a lat
tice gas is simply to extend the original model of Yang 
and Lee. 19 Following Fisher's2o notation we can define 
a potential function UN of the fluid over a regular lattice 
of M sites, which includes triplet functions in the form 

where cf>(i,j) and l/J(i,j, k) are pair and triplet potential 
functions for atoms located at lattice sites i, j and i, i, k, 
respectively. The variables ti' i = 1, 2, ... ,M are the 
usual occupation variables taking values of 1 or 0. 

For the purposes of a lattice model we can define the 
potential functions as follows: 

and 

cf>(i, j) = cf>r if i and j are rth neighbor sites, 1 ~ r~ R 

= ° otherwise, (36) 

l/J(i, j, k) = l/!P.s if i and j are pth neighbors, 

j and k are qth neighbors, and 

k and i are sth neighbors, 
max(p, q, s) ~ S 

= ° otherwise. (37) 
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On transforming the expression (35) to the spin-~ ISing 
model spin up, spin down representation by using the 
relation 

ti= ~1 + 0), a l =± 1, 

we obtain 
M max<R, S) 

UN=tIDo+tAo~ai+ ~ t(CPr+Dr) ~(J'iaJ 
j=l r:l (Ij)r 

(38) 

(39) 

where Yo and Dr' r= 1, 2, ... , S are constants formed 
from finite sums of the interaction parameters CPr and 
l/Jpq&' and where (ij), denotes the summation over rth 
neighbor pairs, and (ijk)pq& denotes the sum over the 
triplet sites defined in Eq. (37). Following the usual 
procedure, we can consider Eq. (39) to define the 
Hamiltonian of a spin equivalent Ising model for the lat
tice fluid which incorporates triplet potential functions. 
In this representation of the problem the canonical par
tition function of the spin equivalent Ising model is sim
ply related to the grand canonical partition function of 
the original fluid model (see Fisher20

); in this way we 
can determine the thermodynamic functions of interest 
for the model of the fluid. 

The two-dimensional triangular lattice and the three
dimensional face centered cubic lattice form simple ex
amples of Eq. (39). For these two lattices we can form 
a triplet potential model which will only involve nearest 
neighbor links of the lattice. This is the case when R = S 
= 1, and consequently it is sufficient to examine the pro
perties of a spin equivalent Ising model defined by a 
Hamiltonian Jr'N in the form 

~=-J1 ~aiaJ-J2 ~ aiapk-f~al' (40) 
(jill (ijk)l11 

where Jl> J2 , and f are constants which can be readily 
determined through the transformation Eqs. (38) and 
(39). The problem is to evaluate the partition function 

ZN=Trexp(-~). (41) 

The Hamiltonian of Eq. (40) is clearly an example of 
the class of Hamiltonians defined in Eq. (1) in which n 
=3. The simplex transformation discussed in Sec. V 
could conveniently be applied to the problem of develop
ing the low temperature expansion of the partition func
tion. On combining the simplex transformation method 
with the present data available on the conventional ISing 
model problem it would be possible to obtain the low 
temperature expansions of the thermodynamic functions 
of this triplet model up to the same order of perturba
tion as recently achieved by Sykes and coworkers. 11 

Some details of these calculations have recently been 
given by Griffiths and Wood. 21 

The high temperature expansion of Eq. (41) is an ex
ample of the expansion of Eq. (18) in which n = 3. The 
form of this expansion can be obtained in the usual way 
by using the Van der Waerden identities 

(42) 

and 

(43) 
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The graphs contributing to this expansion are the sim
plicial complexes of the type shown in Fig. 1. We have 
derived examples of these expansions by obtaining some 
of the initial terms in the series expansions for the free 
energy F per site in zero field (j=0), and for the sus
ceptibility per site in zero field Xo of the Ising model of 
Eq. (40). The expansions are listed below. 

Zero field free energy 

(a) triangular lattice 

-F IkT -log2 - 3 log cosh({3J1) - 210gcosh({3J2) 

= 2v~ + 3vt + 15v~v~ + 6v~ + 102vM + 11v~ + 543vtv~ 

+ 90viv~ + v~ + 24v~ + 2520v~v~ + 1120v~v~ + ... 

(44) 

(b) face centered cubic lattice 

- F lIlT -log2 - 610g cosh({3J1 ) - 810g cosh({3J2) 

= 8v~ + 4V1V~ + 33vt + 336viv~ + 24v~ +. .. (45) 

Zero field susceptibility 

(a) triangular lattice 

kTXo = 1 + 6v1 + 30vi + 6v~ + 138v~ + 120v1 v~ + 606vi 

+ 1134viv~ + 30v~ + 2586v~ + 7890v~v~ + 1200V1V~ 

+ 10818v~ + 44046vtv~ + 18654viv~ + 180v~ + ... 

(46) 

(b) face centered cubic lattice 

kTXo = 1 + 12vl + 132vi + 72v~ + 1404v~ + 2880v1 v~ 

+ 14652vi + 66112viv~ + 6280v~ +.. . (47) 

VIII. SUMMARY 

We have considered in some detail the methodology 
which surrounds the techniques of developing power se
ries expansions for the classical network models which 
are used frequently in the theory of critical phenomena. 
It has been shown that the powerful and commonly adopt
ed technique known as the high temperature-low temper
ature transformation is a special case of a generalized 
transformation which we have called the simplex trans
formation. This transformation can form the basis of an 
approach to many problems which are defined in terms 
of lattice models. 

The conventional ISing model problem which has been 
well studied using a variety of techniques can be consid
ered afresh in the light of this new transformation. For 
example the present work on the inclusion of longer 
range pair interactions9 could be extended using this 
technique. We have also shown that the simplex trans
formation is ideally suited to the treatment of lattice gas 
models in which three-body forces are considered; in a 
lattice such as the face centered cubic lattice four-body 
potential functions could also be included without many 
additional complications. 

The present authors are presently engaged in applying 
the simplex transformation to problems in which three
body potential functions are included. 
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